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Overview

* Organization of Genetic
Regulatory Circuits

« Simulations of Cellular
Regulation

* Modelling




Why Simulations are
needed ?

To identify design principles for the
* biochemically based logic.

To understand the dynamical response of both
* normal and mutant cells to environmental and
interval signals.

To predict quantitative effects of mutations on
* regulatory outcomes.

To verify consistency and completeness of
* hypotheses reactions systems.




What are the challenges in
Simulations ?

Developing simulation techniques applicable to
cellular processes where genetic regulation is

centrally important.
* Developmental Differentiation

- Facultative Infection Process

* Cell Cycle Control

In ’61 Cold Spring Harbor Conference on cellular
Regulatory Mechanism, regulatory nets are

characterized as ‘Circuits’.




Regulatory circuits

Hierarchical organization
* Regulons — control groups of operons

* Global regulons — multiple pathway regulation

(e.g. IHF , 032)
* Often neglected in simulations

* However , needed in some circumstances (e.g.

2 o factors competing)




Regulatory feedback

* OQutput influences input signals
- Auto regulatory feedback loops

° In E.coli, there are 107 ¢’ promoters
! 68% auto regulating

1'13% auto activating

* Specialized enzymes often under regulatory

control




What defines the
logic that how
well the cell
functions at any
instant?

Complement of distinct molecules in the cell

State of DNA | Methylation or Demethylation



Electronic logic

Genetic logic

Signals
Distribution

Organization
Logic type

Noise

Signal/noise ratio

Switching speed

Electron concentrations
Pomnt — point (by wires
or by electrically encoded
addresses)

Hierarchical
Digital, clocked
sequential logic

Inherent noise due to
discrete electron events
and environmental effects

Signal/noise ratio
high 1n most circuits
Fast (> 108 sec™!)

Protein concentrations

Poimnt — point
(movement by
diffusion or active
transport by encoded
reaction specificity)

Hierarchical

Analog unclocked
(can approximate
asynchronous
sequential logic)

Inherent noise due to
discrete chemical
reaction events and
environmental effects

Signal/noise ratio low in
most circuits

Slow (<10™2 sec™))
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Regulatory mechanisms

c fanouts controlling
multiple subsystems

autoregulatory
feedback

elongation
control

| Pg translational
combinatoric control
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Integrating
environmental
signals

* Chemotactic responses

" Attractant or repellent molecules
bind directly to specialized receptors
leading to phosphorylation cascade

Pulses of agents matched with

behavioural changes

" Mutants shown to have altered

enzymatic activity




Cell cycle models

- Genetic regulation coupling to cell cycle

* Modelling of biochemical reactions that

support oscillations

! p3tactivation, p3¥/cyclin interactions and cyclin

degradation suggested

[ However shown to be far more elaborate




Developmental Switches

- Different = physiological states  require

switching mechanisms

* Cell-density-dependent gene expression

| Quorum-sensing

| Higher density = Higher peptide Pheromone

concentration

! Lytic/Lysogenic determination




Modelling

* Promoter control Models

* Stochastic processes in

regulatory kinetics

* Modelling macromolecular

complexes

* Uncertainty in intracellular
environment and reaction

rates




Promoter Control Models

Xj = kz'Fz'(J?l, X2y ooy Xy) — kdz'xf

X, is the concentration of i protein species

X 1is the time derivative of X; i.e. X = %

k, is the degradation rate constant for protein type i

k. is the rate of protein production with gene type i is ON

F. is the step function assumed to be 0 or 1 depending on

l

the concentration to threshold values determined by the
kinetics of the promoter sites




Assumptions in
Boolean Network

The state of each gene or other
network element can be characterized
as either on (one) or off (zero).

* The combinational control of gene
expression can be reduced to a “wiring
diagram” of the network.

* The computation of the interactions
indicated by the wiring diagram can
be approximated by Boolean
combinational logic rules.

* All elements (to first approximation)
update their on or off states
synchronously.

Software used: D.D.L. (Discrete Dynamics
Lab) that computes the behavior of
hypothetical networks.




Limitation of Boolean
Network

Poor approximation Shea—Ackers scheme




Bacteriophage A encodes two repressor proteins

* Cro repressor acts to turn off early gene

transcription during lytic cycle

* CI repressor maintains lysogenic growth

Together, they are known as




Other control mechanism

- Termination sites activation control
*  Many post-transcriptional regulations

Many protein-mediated controls
d  Proteolysis
1 Phosphorylation

1 Methylation




Model macroscopic Kkinetics of chemical
reactions using ordinary differential equations

Difficult to achieve in genetic reaction due to
spatial isolation, low concentration and slow
reaction rates

— calculating the
probabilistic outcome of each discrete chemical
event

State vector characterize the states of the
system.



There are two fundamental ways to view coupled

systems of chemical equations:

* Continuous, represented by differential equations

whose variables are concentrations

" Discrete, represented by stochastic processes

whose variables are numbers of molecules.




Gillespie Algorithm

Resulting

Stochastic changes in

realization the number

of temporal of each

behavior of molecular

the system species ‘
Calculating Based on }
the the
probabilistic application
outcome of of CME
each (chemical
discrete master
chemical equation)

event




Gillespie Algorithm

Consider, for example,

the set of reactions.

The propensities of the reactions
are given by k, k, ...k. The
constants £, may be a function of

temperature, volume, electrolyte
concentration etc.

Ky
A+B—C

£
B+C—D
£y
D+E—FE+F
k
F—D+G

k;
E+G—A4




Gillespie Algorithm

Gillespie  proposed two exact stochastic
simulation algorithms.

Consider a system of r reactions and assume
every rate constant k; are true constants.

At each time step, the system is in exactly one
state. A transition consists of executing a reaction
so there are at most r possible transitions from a
given state.

The key is to choose random numbers using a
computer random number generator and to use
those random numbers to pick transitions.




Gillespie Algorithm

Direct Method

Calculates explicitly which reaction occurs next
and when it occurs

First Reaction Method

Generates for each reaction u a putative time 7,
at which reaction u occurs, then chooses the
reaction x* with the smallest time 7,° (the first

reaction) and executes reaction u" at time 7,




Gillespie Algorithm :
Direct Method

Probability Density Function

P(ut)dt = a, exp(—T) a)) d (1)
J

[, P(ndr =a,Y;a; (2)

2P (u, T)dt = Z]-a exp(—7 Zja) dt 3)




Gillespie Algorithm :
Direct Method

1. Initialize (initialize numbers of molecules,
set t « 0).

2. Calculate the propensity function, a;, for all
L.

3. Choose u according to the distribution in
eq 2.

4. Choose 7 according to an exponential with
parameter ).;aj (asineq 3).

5. Change the number of molecules to reflect
execution of reaction u. Set t « t + 7.

6. Go to Step 2.




Gillespie Algorithm :
First Reaction Method

Generates a putative time 7, for each reaction to
occur - a time the reaction would occur if no other
reaction occurred first - then lets u be the
reaction whose putative time is first, and lets 7 be

the putative time 7,.

The algorithm of the previous subsection is direct
in the sense that it generates u and T directly.




Gillespie Algorithm :
First Reaction Method

1. Initialize (1.e., set 1nitial numbers of molecules,
set t « 0).

2. Calculate the propensity function, a,, for all i.

3. For each i, generate a putative time, 7; |,
according to an exponential distribution with
parameter q,.

4. Let u be the reaction whose putative time, 7, , 1s
least.

5. Let T be (o

6. Change the number of molecules to reflect
execution of reaction u. Set t « ¢t + 1.

7. Go to Step 2.




Gillespie Algorithm :
First Reaction Method

This algorithm uses r random numbers per
iteration (where r is the number of reactions),

takes time proportional to r to update the a; s,
and takes time proportional to r to identify the
smallest 7.




Stochastic Process

*Random burst of

numbers of protein

*Timing uncertainty

*Stronger promoter

*Higher gene dosage

*Lower signal

threshold
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Stochastic Process

Different
Activation
time due to
variation of

the
concentration

Log[Repressor]

Log[Activator]




Modelling macromolecular
complex

N\

Realistic Modelling | Central
Challenge

\

Complicated network
mechanism

[

. Dynamic behaviour

/




Uncertainty of Intracellular
Reaction Features




Challenges

PTM
message

Complex processing
Regulons

Category

Eukaryotic Networks




Opportunities

* To recognize Common Circuit Motifs.

* To identify function of individual protein in
regulatory control mechanisms.

* To redesign circuit for altered functions.
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