Parameter Estimation
This module provides the tools needed to estimate parameters for ODE‐based models of phosphorylation dynamics.
Overview
The module is organized into several submodules:
normest.py
– Implements normal parameter estimation. This approach fits the entire time-series data in one step.toggle.py
– Offers a single function (estimate_parameters
) to pipe normal estimation based on a mode flag.core.py
– Integrates the estimation methods, handling data extraction, calling the appropriate estimation (via the toggle), ODE solution, error calculation, and plotting.
Features
-
Bootstrapping:
Bootstrapping can be enabled to assess the variability of the parameter estimates. -
Flexible Model Configuration:
The module supports different ODE model types (e.g., Distributive, Successive, Random) through configuration constants. For example, when using the "randmod" (Random model), the parameter bounds are log-transformed and the optimizer works in log-space (with conversion back to the original scale). -
Integration with Plotting:
After estimation, the module calls plotting functions (via thePlotter
class) to visualize the ODE solution, parameter profiles, and goodness-of-fit metrics.