Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath

Report: Complex Systems

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath®

Correspondence:
abhinav.mishra®fu-berlin.de
Department of Mathematics and
Computer Science, Freie
Universitat-Institute of Computer
Science, TakustraBe 9, 14195
Berlin, Germany

Full list of author information is
available at the end of the article
*Group 7

Abstract

We know perfectly well that, an ODE might be wrong, and hence, we consider
stochastic dynamics to be the ground truth, relatively. The modelling,
simulation, and inference of a well-mixed dynamical system are part and parcel
for the study of complex systems.

We implemented, and estimated the unknown parameters for within-host
dynamical system of viral infection in the human body, using both, built-in
(continuous and deterministic), and user-defined (discrete) optimization
functions, i.e. curve_fit, solve_ivp (ODE-solver), and SSA algorithm in python.
The distribution of optimized parameters played a key role in parameter
identification, and the time-series formalism for infection probability.

Overall, 25 hours were spent on this project.

Keywords: ODE simulation; Stochastic; Dynamical systems; Chemical reactions

Scientific Background

Viral infections can spread differently strong and infect thereby more or less healthy
cells. To get a deeper understanding of the dynamic of a virus infection, it can be
modeled by using reaction rates, a stoichiometric matrix, reaction parameters and
initial states. A possible way of generating the model is to classify the cells in
2 groups: uninfected target cells, and infected cells. For each group, a variable is
generated and an additional one for the free virus. [1][2]

The human body produces cells, which can be infected by the virus. Hence, the
virus RNA is transferred into the human cell, which leads to the production of more
virus by the infected cell. After producing the virus, the cell releases the virus to
the surrounding. To prevent the virus from spreading, humans have an immune
system, which initiates the apoptosis of infected cells. Also non infected cells can
initiate apoptosis under different circumstances. For each of these processes, a rate

is needed to create a model. [1][2]

Homework 1

Simulation, Optimization, Programming

Goal
1 Implement the viral infection model model in such as way, that the unknown
parameters are arguments that you pass to your reaction rate function, right-
hand-side function (set of ODEs), as well as to an ODE-solver. Set up the
ODE-solver, such that the simulation results corresponding to the provided
data.

mailto:abhinav.mishra@fu-berlin.de

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 2 of 6

2 Estimate all unknown parameters of the aforementioned model using the data
provided by you.

3 Perform the parameter estimation 30 times with random start parameters.
Collect the inferred ’optimal parameters’ and make a boxplot.

Methods

The program was written in python, a high-level programming language, which fo-
cuses on readability. It is equipped with many libraries that extend the capabilities
of the language [3]. The libraries numpy, pandas, seaborn, matplotlib, scipy and
sklearn were used. numpy is a library for scientific computing, providing support
for multidimensional arrays and more [4]. The library pandas offers the function
DataFrame, which was used to generate a dataframe from a dictionary [5]. mat-
plotlib is an extensive library for the creation of visualisations in Python [6]. The
library seaborn is based on matplotlib and was used to visualize data [7]. scipy is a
library which offers functions, which can be used for scientific computing [8]. The
MinMazScaler of the open source library sklearn, for predictive data analysis, was

used for nomraliztion [9].

—&— V\irus concentration
simulation
2000
]
w 1500 I'
b |
E [
= |
& |
=]
E 1000
=
=
500 vz—-—-—I—I/\
0
0 2 4 B B 10
Time
Figure 1 Viral concentrations data (blue squares), as well as model prediction with estimated
parameters cz, ¢3, ¢4, c5 (orange line)

Results & discussion

The function curve_fit from scipy was used to calculate the missing parameters.
Therefore the initial guesses [0.1, 1, 5, 1] were used for the parameters. The following
values for the parameters resulted from the calculation: c; = 0.00,c3 = 0.65,¢c4 =
42.73,c5 = 14.16. These values were used to predict the number of viruses and
compared in a plot with the original data of the viral concentration (Figure 1). The

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 3 of 6

curves of the original data and the prediction are mostly overlapping and therefore,
it can be concluded that the model prediction with the before estimated parameters
is a good approximation of real virus concentration. After tweaking the curve_fit

4 5

Figure 2 Boxplots for standard (top-left), and normalized (top-right) values, and density plot for
normalized values of estimated parameters c2, c3, c4, c5 (bottom) . Normalization was done using
MinMaxScaler from library sklearn

10

function with random start parameters, we collected the inferred parameters after
30 simulations, and plotted them in a boxplot with and without normalization
(Figure 2), where each boxplot depicts the distribution of obtained parameter values
for cs, c3, ¢4, & c5. Normalization was done using MinMaxScaler from library sklearn
[10].

The parameters ¢y and c3 have outliers before and after the normalization, while
c5’s median is highly skewed to the minima after the normalization. The leak of
outliers of the normalized boxplot of ¢4 indicates a normal distribution and the
reasonable central median is an indication for a symmetrical distribution. In con-
clusion, out of the four parameters the results for the parameter c4 are more equally
distributed. However, the inter-quartile ranges of ¢4 and c5 are large, which means
that we have a larger range in which the true value of the parameters probably lies
compared to co and c3. Therefore, these two parameters can be estimated the least
exact and consequently the least well.

Based on the evidence above, ¢4 or ¢; should be the parameter to be determined.
Hence cj5 is less equally distributed than c4, the results of ¢5 presumably give a bet-
ter tendency of the true value. For that reason ¢4 should be determined in a further
experiment. After the biological experiments, the same should be fixed resulting
in ¢4 = 10. Therefore, due to parameter adjustment in the refactored arguments,
the remaining parameters co = 0.02,c3 = 2.20 and ¢5 = 0.82 estimation was satis-
factory compared to the previous one as it reduced parameter uncertainty/error in
solving ODE, and simulating 30 times (Figure 3). As curve_fit used non-linear least

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 4 of 6

~@- Virus concentration
smulation

2000

15

Humber Viruses

10

05

0.0

10 L L

ik}

06

Density

o4

0z

0.0

2 a3 [} 050 -025 000 025 050 075 100 125 150

Figure 3 Viral concentrations data (blue squares), as well as model prediction with estimated
parameters ca, c3, c5 (orange line)(top-left). The boxplots for standard (top-right), and normalized
(bottom-left) values, and density plot (bottom-right) for normalized values of estimated
parameters c2, c3, c4, c5. Normalization was done using MinMaxScaler from library sklearn

squares (also known as Levenberg-Marquardt method) to fit a function, and refining
parameters after each iteration, so the covariance matrix, and it’s inverse solution
becomes more efficient, and faster with less residual error.

Curve-fitting is to get the values for a dataset through which a given set of ex-
planatory variables can actually depict another variable. This is the reason that

altered our ability to estimate the remaining three parameters, most likely.

Homework 2

Prediction, Programming, Analysis

Goal
1 Perform stochastic simulations with the SSA algorithm to study how the
infection probability depends on the number of viruses that an individual is
exposed with, using the model from Homework 1.
2 Calculate the Ezposure - Infection Probability based on 300 stochastic simu-
lations.
3 Plot the infection probability (y-axis) as a function of the viral exposure (z-

azis).

Methods
For the five values X5 € [1,2,3,4,5] the SSA algorithm was executed 300 times
and from the resulting trajectories infection probabilities were computed for each

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 5 of 6

of the values of X5. We used the code for the SSA algorithm from previous assign-
ments with some adjustments. For example, the stop criterion was not a given time
threshold, but dependent on the values of X; and Xs.

Results & Discussion

For this task, we used the provided parameters kg = 100,%k; = 0.1,¢co = 0.01,¢3 =
1.0,¢4 = 10,¢5 = 2 that made it possible for us to be able to work on the task
without depending on the results for the previous one, primarily. Especially, since
we always got different results for task 1 based on the machine used to run the
code, the python version used or even the scipy version that was installed. It was a
problem to find the right balance between deterministic, and stochastic.

1.00 - m

0.95 A

54

©

o
L

0.85 1

Infection Probability

o

®

o
L

0754 m

Figure 4 Infection probability (y-axis) as a function of the viral exposure (x-axis)

10000

=]
=)
o

8000

=
R
=

2

=

5
o
2
I

® Virus gone
Virus won

Simulations

&
S
=
o
2
S

Elimination Probability

m
=
=
=

=

=

o

=
| |
n
| |
=)
=
=
| |
| |

Figure 5 Viral trend after 10,000 simulations (left), and Elimination probability as a function of
the viral exposure (x-axis) (right)

For the criteria to determine whether the virus has been eliminated, we concluded
that an infection is eliminated when there are no more infected cells and also there
are no more free virus in the system. Thus, the values X; = 0 and X5 = 0 have
to be achieved to be counted as an eliminated infection. We can see an increasing
upward trend in the infection probability plot as a function of the viral exposure
(Figure 4), so the elimination probability must have a downward trend (hyperbolic).

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 6 of 6

Furthermore, we can extrapolate the elimination probability after exposure with a
single virus.

If the infection probability after exposure with a single virus P, (X»(1)) = 0.72
then, the elimination probability after exposure with a single virus Pe;pm (X2(1)) =
1—0.72 = 0.28 (Figure 5). After 10,000 simulations, we came up with the following
formula that estimates the elimination probability after exposure with n viruses,
based on the elimination probability (Peim (X2(1)) = 0.28) after exposure with a

single virus:

P.im x 0.28 xn ™1

Abbreviations
ODE: Ordinary differential equations, SSA: Stochastic simulation algorithm, RNA: Ribonucleic acid

Competing interests
The authors declare that they have no competing interests.

Author’s Contributions (Group 7)
1 Abhinav Mishra edited, and wrote parts in the report. He also worked on the implementation of homework
1.
2 Jule Brenningmeyer wrote the section scientific background and parts of homework 1. She worked on the
code for homework 1.
3 Maike Herkenrath worked on the code for homework 1 and 2. She also added parts in the report.

References
1. Boianelli, A., Nguyen, V.K., Ebensen, T., Schulze, K., Wilk, E., Sharma, N., Stegemann-Koniszewski, S.,
Bruder, D., Toapanta, F.R., Guzman, C.A., et al.: Modeling influenza virus infection: a roadmap for influenza
research. Viruses 7(10), 5274-5304 (2015)

2. von Kleist, M.: 4. homework & report (complex systems block) introduction to focus areas ws 2022/23 (2022)
3. Welcome to python.org. doi:https://www.python.org/
4. Numpy. doi:https://numpy.org/
5. pandas.dataframe - pandas 1.5.2 documentation.
doi:https://pandas.pydata.org/docs/reference /api/pandas.DataFrame.html
6. Matplotlip - visualisation with python. doi:https://matplotlib.org/
7. seaborn: statistical data visualization- seaborn 0.12.2. doi:https://seaborn.pydata.org/
8. Scipy. doi:https://scipy.org/
9. scikit-learn: machine learning in python. doi:https://scikit-learn.org/stable/

10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.:
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011)

http://dx.doi.org/https://www.python.org/
http://dx.doi.org/https://numpy.org/
http://dx.doi.org/https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
http://dx.doi.org/https://matplotlib.org/
http://dx.doi.org/https://seaborn.pydata.org/
http://dx.doi.org/https://scipy.org/
http://dx.doi.org/https://scikit-learn.org/stable/

	Abstract

