Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath

INTRODUCTION TO FOCUS AREAS WS 22/23 — GROUP: SEQSTYLES

Report: Implementing a search

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath®

Correspondence:
abhinav.mishra®@fu-berlin.de
Department of Mathematics and
Computer Science, Freie
Universitat-Institute of Computer
Science, TakustraBe 9, 14195
Berlin, Germany

Full list of author information is
available at the end of the article
*Group 7

Abstract

Imagine a fictional world in the future. A Virus has been spreading the world. You
are working together with Virologists on a vaccine. To check if this vaccine is
working the virologists need to find certain markers in the human genome.

Keywords: Naive; suffix-array; fmindex; C++; perl; R; runtime; memory; query

1 Introduction

For answering of various biological questions it is necessary to find a specific pattern
in a given text such as a sequenced DNA or RNA. Therefore, different approaches
with different advantages and disadvantages can be used. Before applying an algo-
rithm to find the pattern, the text can be pre-processed, to create the static data
structure of a suffix array. Suffix arrays, introduced by Manber and Myers, contain
the indexes of all suffixes of a given text, which are sorted lexicographical. By trans-
forming the given text to a suffix array the runtime of searches in the text can be
reduced [1] [2].

The two search types exact and approximated string matching can be applied to
find a pattern in a text. Exact string matching finds all occurrences of the pattern
in the text, while approximated string matching finds additionally the pattern with
a defined number of errors. Exact string matching can be performed by a binary
search, which has a runtime of O(m -log(n)). To improve the runtime of the search
to O(m + log(n)) the mlr trick can be used. The longest common prefix of the left
and the right border are saved during the search, whereby the intervening suffixes
no longer need to be compared at these positions. However, if no common prefix
exist the worst case runtime is still O(m - log(n)). Another time reducing approach
is to save the length of the longest common prefix (lcp) of the suffixes. To determine
the left border, of the interval containing the pattern, the lcp-value of the left border
and the pattern and the Icp-value of the left border and the middle are compared
to decide if the middle will be set to the new left or right border. The procedure
for the right border is performed accordingly. Through the use of the lcp-values the
runtime can be reduced to O(m + log(n)) [2] [3] .

An alternative to the use of suffix arrays is the FM index, which uses less storage
space. The FM index uses the data structures Occ, C and L. The data structure L
is also called the Burrows-Wheeler transform and is obtained from the conceptual
matrix M. The text T and all cyclic shifts of the text are saved in a lexicorgaphically
order in the conceptual matrix M. The last column of the matrix corresponds to the
data structure L. Occ is a matrix which contains how often each character occurs
for each line of L. C is an array that indicates for each character in the alphabet
how often a lexicographically smaller character occurs in the text T. To find the

mailto:abhinav.mishra@fu-berlin.de

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 2 of 7

pattern in the text with these data structures a backward search is performed. The
backward search returns an interval with the length of number of occurrences of
the pattern. These matches are located in the text. [4]

To lower the runtime of the FM Index search we make use of the pigeonhole
principle. If a query matches a reference with 2 errors and we then split the query
in 3 parts, at least one of the parts will not include an error. This can be implemented
by searching for parts of a query without allowing an errors and then checking the
previous and following sections to see whether the whole query matches (this time
allowing errors).

2 Goal

Given a reference text, which has parts of the first chromosome of the human genome
with a list of markers ’illumina_reads_XYZ.fasta.gz’. We have to find out how many
of these markers appear in the reference, and which algorithm is best suited:

1 TImplement a naive search algorithm.
Implement a suffix-array-based search.
Implement an fmindex-based search.
Implement an fmindex-based search that exploits the pigeonhole principle

T o W N

Benchmark (runtime and memory) your solutions for 1000, 10,000, 100,000

1,000,000 queries of length 100.

6 Benchmark (runtime) queries of the length 40, 60, 80, and 100 with number
of queries = 1000.

7 Download the Humane Reference Genome here.

8 Benchmark (runtime) of queries with k¥ = 0,1,2 errors of length =

40, 60, 80, 100 with number of queries = 1000.

3 Methods: Implementation
The human reference genome file (size = 900MB) was downloaded using a simple
curl command via RefSeq ftp:

curl * ftplink x —O

3.1 C++

For the naive approach we did a very simple algorithm that first loops over the
entries in the reference and for each of them loops over all entries in the query to
check whether they are equal. If a different character is found it stops the loop and
continues with the next entry in the reference.

The suffix array search used the provided function libdivsubsort to create
the suffix array. Then a basic binary search is used to find a match in the reference.
If such a match is found consecutive entries of the suffix array are also checked for
a match. This continues until a non-matching suffix is found.

For the search with the FM-Index we constructed the FM-Index by using the
provided code from the lecture. To find the queries the function seqan3::search
was used.

The last task of using the pigeonhole principle in addition to the FM-Index
search was not completed. The queries are split into 3 equal sized parts and for

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.26_GRCh38/GCF_000001405.26_GRCh38_genomic.fna.gz

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 3 of 7

each of the parts the FM-Index is searched. We know that of the 3 parts only 2
can include an error, so we search for perfect matches for each part. To complete
the program the reference should be searched, surrounding the indices where parts
of the queries were found, while allowing errors.

3.2 perl

The program matches marker sequences from illumina reads to the reference genome
file. The input files are of .fasta.gz format. Usage of standard modules: stricts,
warnings, and diagnostics facilitated the creation of a clean code with good
coding practices. There are check points in the script to make sure error handling,
and lexical scope is maintained [5].

Only core modules of perl were used [5]. As most perl versions have standard
modules already installed, making it executable on unix-based servers, and local
systems. Perl has a strong regular expression matching, so a regex form was used
to search, and display number of occurrences for each sequence in the reference
genome, globally [5].

As we know, .fasta.gz is a gzipped version of .fasta so file reading was done such
that it doesn’t has to decompress but directly read, in turn, saving memory, and
time. A subroutine read_fasta() was written to read and parse the files, removing
new line characters, FASTA header, and returning only the sequence.

A short walk through the program read_pattern.pl would be helpful:

1 Reading the reference file in one slurp using a written subroutine read_fasta().

2 Asking user which read file to use for search/matching (length = 40, 60, 80, 100)

using STDIN I/O file handling operator, and saving the header (ID) and se-
quence in the hash table as key:value pair.

3 Asking user the number of queries to perform for the selected read length,

and correspondingly storing the sequences (values) in an array.

4 Asking the user for performing regex pattern matching or index-based match-

ing.

5 Displaying the matched sequences, and the total counts out of numeber of

queries.

6 Closing the file handlers, and exit the program.

33 R
The program reads one reference genome file, one read sequences file, number of
queries for read file, and creating then searching using fmindex [6] [7]. The output
displays the matched read sequences after the positions of reads in reference se-
quence. It has dependencies/required packages seqinr, fm.index, optparse were
used [7] [8] [9].
fm.index wraps the C++ library SDSL v3 and uses a Compressed Suffix Array
based on a Wavelet Tree of the Burrow-Wheeler Transform of the given
string library [7] [10].
Generally speaking, fmindex consists of:
e a Burrows-Wheeler transform (BWT) of the text string represented with
wavelet matrix.
e an array of size O(o) (o: number of characters) which stores the number of
characters smaller than a given character.

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 4 of 7

e a (sampled) suffix array.
A walkthrough the program fmindex.R[6]:
1 Passing file names, and query arguments using python-like optparse package.
2 Reading the input gzipped .fasta file for sequence retrieval using seqinr pack-
age.
3 Creating fmindex (1-based indices) using package fm.index.
4 Searching the index for sequence matching.
5 Displaying the matches with three columns:
(a) pattern_index is the index of the read sequence.
(b) corpus_index is the index of the matching string in the reference.
(c) position is the starting position of the match within the reference se-
quence.
6 Displaying each matched sequence by retracing the index to the list of read

sequences.

4 Results

The following tables shows the memory usage and runtime for the C++ programs
naive_search.cpp, suffixarray_search.cpp and fmindex_search. cpp including
perl and R implementations as computed by /usr/bin/time -v and using times-
tamps within the program.

Number of Queries

1000 10000 100000 1000000
Naive Search 528.52s NA NA NA
Suffix Array Search 0.577083s 3.73734s 42.3837s 49.3992s
fmindex 0.414965s 0.773419s 4.47966s 5.69738s
Naive(perl) 1.24min 10min 2hrs NA
fmindex(R) 1.20min 1.17min 1.24min NA

Table 1 Runtime for queries of length 100

In fig.1 the runtime for queries varying numbers of queries of length 100 bases are
shown. The time it took the naive search algorithm with 1000 queries was already
over 8 minutes. If we extrapolate from that the time it would take for a million
queries we could not hand in the assignment in time. Therefore we did not run the
benchmark tests for over 1000 queries.

The Suffix Array search was clearly a lot faster than the naive approach with
only 0.58 seconds for 1000 queries. With larger query sets the running time also
increased to almost 50 seconds, which is still an order of magnitude faster than the
naive search.

The search with the FM-Index was even faster then the suffix array search, espe-
cially for higher number of queries. The FM-Index search needed only 5.7 seconds
for 1000000 queries, which is 10 times faster then the suffix array search.

Note that the query set does not have a million entries, so when it is resized to a
million the given 100000 queries are reused.

For a fixed size set of 1000 queries and varying length of 40, 60, 80, 100 bases the
naive search takes about the same time, as can be seen in fig.2.

The suffix array search is slower for the queries of length 40. This is probably
because there are many more occurrences for shorter queries and the way the algo-

rithms was implemented.

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 5 of 7

Number of Queries: 1000

Query length : 40 60 80 100

Naive Search 542.596s 544.459s 542.447s 543.330s
Suffix Array Search 0.322s 0.216s 0.259s 0.437s
SAS, computation of SA included 34.560s 31.130s 31.720s 31.140s
FM Index 0.625168s 0.397651s 0.397606s 0.451831s
fmindex(R) 1.18min 1.27min 1.2min 1.16min
Naive(perl) 3.45min 3.6min 4min 4.09min

Table 2 Runtime for varying query lengths

The binary search for the suffix array will find an occurrence of the query if one
exists. If there is more than one occurrence then there is an interval in the suffix
array where all entries match the query. The first one that is compared to the query
by the binary search can be any of them. The way the algorithm was implemented
only the following suffixes are checked, not the previous ones. Thus, the more a
query appears in the reference, the less efficient it gets because more suffixes are
one after the other compared to the query. And also the less correct this algorithm
gets, as more occurrences can be overlooked. In future implementations a more
sophisticated approach should be chosen, that finds the upper and lower bound in
the suffix array where the reference matches the query.

The search with the FM-Index has the slowest search time for a query length of
40, probably because there are more occurrences for short queries.

Number of Queries

1000 10000 100000 1000000
Naive Search 221056 kB - - -
Suffix Array Search 1000760 kB 1001392 kB 1001580 kB 1023772 kB
fmindex 83224 kB 83620 kB 83668 kB 126748 kB
Naive(perl) 420936 kB 419732 kB 422712 kB NA
fmindex(R) 1422420 kB 1412300 kB 1427116 kB NA

Table 3 Memory usage for queries of length 100

The used memory times are shown in fig.3. In comparison, the fm index search
needed less memory then the other to searches.

In a further task, the queries were allowed to have 0 till 2 errors. The search
was performed with the fm index for different number of queries. The runtimes are
shown in fig. 4. The runtimes are increasing when more errors are allowed and when
more queries are used. The same can be seen when searching for the queries on the
GRCh38.fna.gz human genome assembly with a query lenngth of 40 (fig. 5) or 100

(fig. 6).

Number of Queries
1000 10000 100000 1000000
FM Index (k=0) 0.414965s 0.773419s 4.47966s 5.69738s
FM Index (k=1) 0.919887s 4.61965s 45.1023s 147.019s
FM Index (k=2) 6.99858s 67.6588s 683.868s -
Table 4 Runtime for queries with &k = 0, 1, 2 errors with number of queries = 1000, 10000,
100000, 1000000 on h38_partial.fna.gz human genome assembly. The queries have a length of 100.

Fig.7 shows the runtimes of queries with k = 0, k = 1 and k = 2 errors of length
40, 60, 80, and 100. We used 10000 queries for each search to so that the overall
runtime is not too long but a clear difference between the times is to be seen. Similar
to fig.4, fig.5 and fig.6 the runtime is increasing for more allowed errors. If zero or
one error is aloud queries with a length of 60 show the fastes runtimes, while for two

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath Page 6 of 7

Number of Queries
1000 10000 100000 1000000
FM Index (k=0) 1.38533s 2.2350s 17.0616s 56.755s
FM Index (k=1) 2.11465s 13.3906s 124.626s 434.756s
FM Index (k=2) 14.644s 145.249s 1442.37s -
Table 5 Runtime for queries with &k = 0, 1, 2 errors with number of queries = 1000, 10000,
100000, 1000000 on GRCh38.fna.gz human genome assembly. The queries have a length of 40.

Number of Queries
1000 10000 100000 1000000
FM Index (k=0) 5.29037s 4.81658s 13.6813s 11.8815s
FM Index (k=1) 9.6846s 17.6205s 88.1585s 267.553s
FM Index (k=2) 22.8547s 206.266s 2157.6s 16061.4s
Table 6 Runtime for queries with &k = 0, 1, 2 errors with number of queries = 1000, 10000,
100000, 1000000 on GRCh38.fna.gz human genome assembly. The queries have a length of 100.

errors a query length of 100 seems to be the fastes. The same search was performed
on the GRCh38.fna.gz human genome assembly. In general, the running times are
longer due to the longer sequence, but the ratio of the different times is similar.

Number of Queries: 10000
Query length : 40 60 80 100
FM Index (k=0) 0.625168s 0.542299s 0.674553s 0.849774s
FM Index (k=1) 5.46307s 4.30991s 4.38631s 5.02307s
FM Index (k=2) 78.0268s 73.6055s 75.0378s 68.0739s
Table 7 Runtime for queries with &k = 0, 1, 2 errors of length = 40, 60, 80, 100 with number of
queries = 10000 on h38_partial.fna.gz human genome assembly

In Table 1, 2, and 3, the memory and runtime for the R program fmindex.R
is including the both fmindex creation and fmindex searching for different query
lengths, and number of queries. It is established that creation of fmindex takes
more time than searching it.

In the last task was to implement the pigeon hole principle. We did not manage to
implement the verification of the rest of our query inside the text. Our main problem
was that we did not know how to access the surrounding parts of the found query
in the FM index.

5 Discussion

Suffix array was initially planned to write on perl using a CPAN module
Tree: :Suffix, but time-exhaustion coupled with problems in symlinking with C++
libstree library resulted in no further development. Later, it was found that the
library is no longer maintained by the developer.

The naive search algorithm (with and without index), and fmindex were imple-
mented in perl, and R, respectively.

The perl script can be easily modified to suit the needs for short or long sequence
matching according to user’s requirements. Calling another script or passing argu-
ment variables is also manageable to make it a standalone sequence matcher. Some
modifications might be done for contigs, motifs, etc to account for biological intri-
cacies. For that scenarios, using BioPerl is recommended.

The R script can be changed in a way that it saves the index using fm_index_save ()
and load using fm_index_load () from fm.index package for it doesn’t need to cre-
ate a new index every time, the user exits the R session. While reading the new
task 6 .fna.gz file, the program fmindex.R gives an basic_string::_M_create

error and exited at a non-zero status.

Abhinav Mishra, Jule Brenningmeyer, Maike Herkenrath

Number of Queries: 1000
Query length : 40 60 80 100
FM Index (k=0) 9.82509s 5.98889s 5.30293s 8.9126s
FM Index (k=1) 26.6287s 19.1427s 16.4632s 16.5994s
FM Index (k=2) 282.644s 217.802s 199.969s 187.066s

Table 8 Runtime for queries with &k = 0, 1, 2 errors of length = 40, 60, 80, 100 with number of
queries = 10000 on GRCh38.fna.gz human genome assembly

Considering the memory, and runtime for each benchmark, fmindex search is

the best suited algorithm.

Abbreviations
fmindex: Full-text index in Minute space

Competing interests
Authors declare that they have no competing interests.

Author’s Contributions (Group 7)

e Abhinav Mishra wrote the programs read_pattern.pl & fmindex.R for implementing & benchmarking
naive search in perl, fmindex in R, including only benchmarking for fmindex_search.cpp. He wrote the
corresponding methods sub-sections, and discussion, seperately.

e Jule Brenningmeyer wrote the section scientific background and partly on further parts of the review. She
worked on the code for the naive search, the fm-index search and tried to implement the pigeon hole
principle. She ran the benchmark tests for the fm index task. She familiarized herself with working on the
servers via ssh, using vim and C++.

o Maike Herkenrath wrote the naive search, suffix array search and the partial pigeonhole search
implementations, ran the benchmark tests for task 1 and worked on the report. She also did a lot of the
research for getting all the tools to work since we all had no prior experience with working on a server,
programming in cpp and vim and also had some issues with git.

References

1. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction algorithms. acm Computing
Surveys (CSUR) 39(2), 4 (2007)

2. Reinert, K.: L1,2 suffixarrays-slides (2023)

3. Mitani, Y., Ino, F., Hagihara, K.: Parallelizing exact and approximate string matching via inclusive scan on a
gpu. |IEEE Transactions on Parallel and Distributed Systems 28(7), 1989-2002 (2016)

4. Reinert, K.: L4-7-fm;ndex(2023)

5. Christiansen, T., Wall, L., Orwant, J., et al.: Programming Perl: Unmatched Power for Text Processing and
Scripting. ” O'Reilly Media, Inc.”, 777 (2012)

6. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. https://www.R-project.org/

7. Hug, C.: Fm.index: Fast String Searching. (2022). R package version 0.1.1.
https://CRAN.R-project.org/package=fm.index

8. Davis, T.L.: Optparse: Command Line Option Parser. (2022). R package version 1.7.3.
https://CRAN.R-project.org/package=optparse

9. Charif, D., Lobry, J.R.: SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted
to biological sequences retrieval and analysis. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M. (eds.)
Structural Approaches to Sequence Evolution: Molecules, Networks, Populations. Biological and Medical
Physics, Biomedical Engineering, pp. 207-232. Springer, New York (2007). ISBN : 978-3-540-35305-8

10. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct data structures.

In: 13th International Symposium on Experimental Algorithms, (SEA 2014), pp. 326-337 (2014)

Page 7 of 7

https://CRAN.R-project.org/package=fm.index
https://CRAN.R-project.org/package=optparse

	Abstract
	Introduction
	Goal
	Methods: Implementation
	C++
	perl
	R

	Results
	Discussion

