scripts.step_9_generate_report

step_8_generate_report.py

This script compiles an integrated PDF report summarizing the analyses performed in the CasTuner Python pipeline. It gathers plots and tables from previous steps, mirrors them into a report directory, and generates textual summaries of key biological insights derived from the data. The final report provides a comprehensive overview of degron–Cas tuner performance, kinetic parameters, dose–response characteristics, single-cell noise profiles, and model-driven design space exploration.


add_heading

add_heading(story, text, styles, lvl=1)

Add a heading of level lvl to the story. 1 = main section, 2 = subsection, etc.

Source code in scripts/step_9_generate_report.py
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
def add_heading(story, text, styles, lvl=1):
    """
    Add a heading of level `lvl` to the story.
    1 = main section, 2 = subsection, etc.
    """
    size = 18 if lvl == 1 else 14
    style = ParagraphStyle(
        name=f"Heading{lvl}",
        parent=styles["Heading1"],
        fontSize=size,
        leading=size + 2,
        spaceAfter=6,
    )
    story.append(Paragraph(text, style))
    story.append(Spacer(1, 0.3 * cm))

add_paragraph

add_paragraph(story, text, styles)

Add a paragraph (or multiple paragraphs) to the story. text can be a string or a list/tuple of strings.

Source code in scripts/step_9_generate_report.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
def add_paragraph(story, text, styles):
    """
    Add a paragraph (or multiple paragraphs) to the story.
    `text` can be a string or a list/tuple of strings.
    """
    if isinstance(text, (list, tuple)):
        text = " ".join(str(t) for t in text if t is not None)
    else:
        text = str(text)

    for para in text.split("\n\n"):
        para = para.strip()
        if not para:
            continue
        story.append(Paragraph(para, styles["BodyText"]))
        story.append(Spacer(1, 0.2 * cm))

add_plot_if_available

add_plot_if_available(story, relative_plot, caption, styles, width_cm=14.0)

Embed a plot into the report if present in report/plots. Prefer PNG (created via ImageMagick). If missing, try embedding the PDF directly.

Source code in scripts/step_9_generate_report.py
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
def add_plot_if_available(story, relative_plot: str, caption: str, styles, width_cm: float = 14.0):
    """
    Embed a plot into the report if present in report/plots.
    Prefer PNG (created via ImageMagick). If missing, try embedding the PDF directly.
    """
    base = REPORT_PLOTS / relative_plot
    png_path = base.with_suffix(".png")
    pdf_path = base.with_suffix(".pdf")

    img_path = None
    if png_path.exists():
        img_path = png_path
    elif pdf_path.exists():
        # reportlab can embed PDFs as images only in limited cases;
        # but often it works when Ghostscript is installed.
        img_path = pdf_path
    else:
        return

    img = Image(str(img_path), width=width_cm * cm, height=(width_cm * 0.65) * cm)
    story.append(img)
    story.append(Spacer(1, 0.15 * cm))
    story.append(Paragraph(caption, styles["Italic"]))
    story.append(Spacer(1, 0.4 * cm))

build_knobs_paragraph

build_knobs_paragraph()

Describe gating + model knobs by importing step scripts.

Source code in scripts/step_9_generate_report.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
def build_knobs_paragraph() -> str:
    """
    Describe gating + model knobs by importing step scripts.
    """
    sys.path.insert(0, str(PROJECT_ROOT / "scripts"))
    try:
        import step_1a_fit_upregulation as s1a  # type: ignore
    except Exception:
        return textwrap.dedent(
            """
            All analyses share a consistent gating strategy and modeling
            backbone. Forward- and side-scatter channels define a coarse
            rectangle gate to remove debris, followed by an FSC-H/FSC-A
            singlet gate to exclude doublets. TagBFP (BV421-A) serves as the
            repressor proxy, and mCherry (PE-A) serves as the reporter.

            Kinetic parameters are obtained from exponential rise/decay fits
            to normalized BFP trajectories, while steady-state dose–response
            curves are captured by Hill functions. These parameters then feed
            into a two-variable ODE system (repressor R, reporter Y) used to
            estimate delays and to explore a broader design space.
            """
        ).strip()

    # If import worked, use the actual constants
    try:
        fsc_min = float(s1a.BOUND_MIN[s1a.CH_FSC_A])
        fsc_max = float(s1a.BOUND_MAX[s1a.CH_FSC_A])
        ssc_min = float(s1a.BOUND_MIN[s1a.CH_SSC_A])
        ssc_max = float(s1a.BOUND_MAX[s1a.CH_SSC_A])
        ratio_lo = float(s1a.SINGLET_RATIO_LOW)
        ratio_hi = float(s1a.SINGLET_RATIO_HIGH)
    except Exception:
        fsc_min = 0.4e5
        fsc_max = 2.0e5
        ssc_min = 0.2e5
        ssc_max = 1.3e5
        ratio_lo = 0.85
        ratio_hi = 1.15

    return textwrap.dedent(
        f"""
        Across all steps, the same analysis "knobs" are used to keep the
        quantitative picture consistent:

        • Boundary gate:
            FSC-A in [{fsc_min:.1f}, {fsc_max:.1f}],
            SSC-A in [{ssc_min:.1f}, {ssc_max:.1f}].
          This removes debris and very large aggregates.

        • Singlet gate:
            FSC-H/FSC-A constrained to [{ratio_lo:.2f}, {ratio_hi:.2f}],
            enriching for single cells.

        • Channels:
            tagBFP = BV421-A (repressor proxy),
            mCherry = PE-A (reporter output).

        • Kinetic models:
            – Up-regulation and down-regulation half-times are obtained from
              single-exponential fits to min–max normalized BFP trajectories.
            – At steady state (day 4), dTAG-13 dose–response is summarized
              by a Hill function (K, n) relating normalized BFP to reporter
              fold-change.

        • ODE backbone:
            A two-variable ODE system describes repressor R(t) and reporter
            Y(t), with synthesis/decay terms parameterized by the fitted
            half-times, Hill parameters and reporter decay constant alpha.
            Explicit onset delays align the simulations with the observed
            time courses.

        These knobs define a compact but biologically interpretable model
        of degron–Cas tuners as analog input–output devices.
        """
    ).strip()

load_csv

load_csv(name)

Load a CSV from PARAM_PATH if it exists; warn and return None otherwise.

Parameters:
  • name (str) –

    Filename of the CSV to load.

Returns:
  • Optional[DataFrame]

    Optional[pd.DataFrame]: Loaded DataFrame or None if missing.

Source code in scripts/step_9_generate_report.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def load_csv(name: str) -> Optional[pd.DataFrame]:
    """
    Load a CSV from PARAM_PATH if it exists; warn and return None otherwise.

    Args:
        name (str): Filename of the CSV to load.

    Returns:
        Optional[pd.DataFrame]: Loaded DataFrame or None if missing.
    """
    path = PARAM_PATH / name
    if not path.exists():
        print(f"[warn] Missing {name} – skipping its section.")
        return None
    df = pd.read_csv(path)
    if df.empty:
        print(f"[warn] {name} is empty.")
    return df

mirror_plots

mirror_plots()

Mirror all plots from plots/ into report/plots/ and create PNG mirrors for each PDF.

Source code in scripts/step_9_generate_report.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def mirror_plots() -> None:
    """
    Mirror all plots from `plots/` into `report/plots/` and create PNG mirrors
    for each PDF.
    """
    print("[info] Mirroring plots into report/plots ...")
    for pdf in PLOTS_PATH.rglob("*.pdf"):
        rel = pdf.relative_to(PLOTS_PATH)
        target_pdf = REPORT_PLOTS / rel
        target_pdf.parent.mkdir(parents=True, exist_ok=True)
        shutil.copy2(pdf, target_pdf)

        png_target = target_pdf.with_suffix(".png")
        if not png_target.exists():
            ok = run_convert(target_pdf, png_target)
            if ok:
                print(f"[info] Created PNG mirror: {png_target}")

mirror_tables

mirror_tables()

Mirror all CSVs from parameters/ (including subfolders) into report/tables/.

Source code in scripts/step_9_generate_report.py
132
133
134
135
136
137
138
139
140
141
def mirror_tables() -> None:
    """
    Mirror all CSVs from `parameters/` (including subfolders) into `report/tables/`.
    """
    print("[info] Mirroring tables into report/tables ...")
    for csv in PARAM_PATH.rglob("*.csv"):
        rel = csv.relative_to(PARAM_PATH)
        target_csv = REPORT_TABLES / rel
        target_csv.parent.mkdir(parents=True, exist_ok=True)
        shutil.copy2(csv, target_csv)

run_convert

run_convert(pdf, png)

Convert a PDF to PNG using ImageMagick's convert command. Returns True on success, False on failure.

Parameters:
  • pdf (Path) –

    Path to the input PDF file.

  • png (Path) –

    Path to the output PNG file.

Returns:
  • bool( bool ) –

    True if conversion succeeded, False otherwise.

Source code in scripts/step_9_generate_report.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def run_convert(pdf: Path, png: Path) -> bool:
    """
    Convert a PDF to PNG using ImageMagick's `convert` command.
    Returns True on success, False on failure.

    Args:
        pdf (Path): Path to the input PDF file.
        png (Path): Path to the output PNG file.

    Returns:
        bool: True if conversion succeeded, False otherwise.
    """
    try:
        subprocess.run(
            ["convert", "-density", "300", str(pdf), "-quality", "95", str(png)],
            check=True,
            stdout=subprocess.DEVNULL,
            stderr=subprocess.DEVNULL,
        )
        return True
    except FileNotFoundError:
        print("[warn] ImageMagick 'convert' not found – skipping PNG creation.")
        return False
    except subprocess.CalledProcessError:
        print(f"[warn] Failed to convert {pdf}{png}")
        return False

summarize_alpha

summarize_alpha(df)

Summary for alphamcherry.csv table.

Source code in scripts/step_9_generate_report.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def summarize_alpha(df: pd.DataFrame) -> str:
    """
    Summary for alphamcherry.csv table.
    """
    if "alpha" not in df.columns:
        for alt in ("alphamcherry", "alpha_mcherry", "a"):
            if alt in df.columns:
                df = df.rename(columns={alt: "alpha"})
                break
    if "alpha" not in df.columns:
        return "Could not find an 'alpha' column in alphamcherry.csv."

    vals = df["alpha"].dropna().to_numpy(float)
    if vals.size == 0:
        return "No finite alpha values found."

    n = len(vals)
    a_min, a_max = float(np.min(vals)), float(np.max(vals))
    a_med = float(np.median(vals))

    t_half = np.log(2.0) / vals
    t_min, t_max = float(np.min(t_half)), float(np.max(t_half))

    return textwrap.dedent(
        f"""
        The mCherry degradation / dilution rate alpha was fitted from Rev
        time courses for {n} instances. Alpha values span {a_min:.3g}{a_max:.3g} h⁻¹
        (median {a_med:.3g} h⁻¹), corresponding to effective reporter half-lives
        of roughly {t_min:.2f}{t_max:.2f} hours. This sets how quickly the
        reporter output can track changes in repressor activity.
        """
    ).strip()

summarize_bootstrap_global

summarize_bootstrap_global(boot_all)

Summarize bootstrap distributions (uq_sensitivity/bootstrap_params_and_metrics_all.csv).

Source code in scripts/step_9_generate_report.py
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
def summarize_bootstrap_global(boot_all: Optional[pd.DataFrame]) -> str:
    """
    Summarize bootstrap distributions (uq_sensitivity/bootstrap_params_and_metrics_all.csv).
    """
    if boot_all is None or boot_all.empty:
        return "Bootstrap uncertainty results were not available."

    df = boot_all.copy()
    if "model" not in df.columns or "plasmid" not in df.columns:
        return "bootstrap_params_and_metrics_all.csv missing 'model'/'plasmid' columns."

    metrics = [c for c in ["dynamic_range", "t50", "t10_90", "overshoot", "auc", "y_end"] if c in df.columns]
    if not metrics:
        return "Bootstrap table did not contain expected metric columns."

    parts = []
    for model, sub in df.groupby("model"):
        lines = []
        for m in metrics:
            v = sub[m].to_numpy(float)
            v = v[np.isfinite(v)]
            if v.size < 50:
                continue
            q2, q50, q97 = np.percentile(v, [2.5, 50, 97.5])
            lines.append(f"{m}: median≈{q50:.3g}, 95%≈[{q2:.3g}, {q97:.3g}]")
        if lines:
            parts.append(f"{model}: " + "; ".join(lines))

    if not parts:
        return "Bootstrap summaries could not be extracted (too few finite values)."

    return (
        "Bootstrap uncertainty propagates measurement and fit uncertainty through the ODE model "
        "to generate distributions over predicted behaviors.\n\n"
        + "\n".join(parts)
    )

summarize_delays

summarize_delays(df_de, df_kd)

Summary for delays in derepression (df_de) and repression (df_kd).

Source code in scripts/step_9_generate_report.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def summarize_delays(df_de: Optional[pd.DataFrame],
                     df_kd: Optional[pd.DataFrame]) -> str:
    """
    Summary for delays in derepression (df_de) and repression (df_kd).
    """
    parts: List[str] = []
    if df_de is not None and not df_de.empty:
        col = "d_rev" if "d_rev" in df_de.columns else df_de.columns[-1]
        vals = df_de[col].dropna().to_numpy(float)
        if vals.size:
            parts.append(
                f"Derepression delays (REV) range from {vals.min():.2f}{vals.max():.2f} h."
            )
    if df_kd is not None and not df_kd.empty:
        col = "d_rev" if "d_rev" in df_kd.columns else df_kd.columns[-1]
        vals = df_kd[col].dropna().to_numpy(float)
        if vals.size:
            parts.append(
                f"Repression delays (KD) range from {vals.min():.2f}{vals.max():.2f} h."
            )
    if not parts:
        return "No delay information was available for derepression or repression."
    return (
            "The ODE models required an explicit onset delay to align simulations with\n"
            + "the experimental time courses. "
            + " ".join(parts)
            + " These delays capture upstream processes such as degrader uptake, degron\n"
            + "processing and the time required until the effective nuclear repressor\n"
            + "concentration begins to change."
    )

summarize_design_space

summarize_design_space(design_df, top10_df)

Summary for design-space scan and top-10 candidate selection.

Source code in scripts/step_9_generate_report.py
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def summarize_design_space(design_df: Optional[pd.DataFrame],
                           top10_df: Optional[pd.DataFrame]) -> str:
    """
    Summary for design-space scan and top-10 candidate selection.
    """
    if design_df is None or design_df.empty:
        return "Design-space scan results were not found."

    txt = []

    for col in ["dynamic_range", "t50", "overshoot"]:
        if col not in design_df.columns:
            continue
        vals = design_df[col].dropna().to_numpy(float)
        if not vals.size:
            continue
        txt.append(
            f"{col} spans {vals.min():.3g}{vals.max():.3g} "
            f"(median {np.median(vals):.3g})."
        )

    if top10_df is not None and not top10_df.empty:
        # Try to detect 'score' and 'design_id' or similar
        score_col = "Score" if "Score" in top10_df.columns else None
        if score_col is None:
            for c in top10_df.columns:
                if c.lower().startswith("score"):
                    score_col = c
                    break
        id_col = "design_id" if "design_id" in top10_df.columns else None
        if id_col is None and "plasmid" in top10_df.columns:
            id_col = "plasmid"

        if score_col is not None and id_col is not None:
            best = top10_df.sort_values(score_col, ascending=False).iloc[0]
            best_label = best[id_col]
            best_score = float(best[score_col])
            txt.append(
                f"The top-ranked candidate according to the dynamic-range/"
                f"response-time score is {best_label} (Score ≈ {best_score:.3g})."
            )

    intro = (
        "Using the measured parameter ranges as priors, a synthetic design space\n"
        "of repression ODE models was explored. For each sampled parameter set,\n"
        "the reporter trajectory Y(t) was summarized into dynamic range, response\n"
        "times (t50) and overshoot. This allows ranking hypothetical designs that\n"
        "would be difficult to realize or test exhaustively in the wet lab.\n"
    )

    if not txt:
        return intro + "Summary statistics could not be extracted from the table."
    return intro + " ".join(txt)

summarize_half_times

summarize_half_times(df, label)

Generic summary for up/down half-times table.

Source code in scripts/step_9_generate_report.py
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def summarize_half_times(df: pd.DataFrame, label: str) -> str:
    """
    Generic summary for up/down half-times table.
    """
    cols = df.columns
    if "halftime" in cols:
        col = "halftime"
    elif "t_up" in cols:
        col = "t_up"
    elif "t_down" in cols:
        col = "t_down"
    else:
        return f"No recognizable half-time column found in {label}."

    df_use = df.dropna(subset=[col])
    if df_use.empty:
        return f"No finite half-times available for {label}."

    n = len(df_use)
    v = df_use[col].to_numpy(float)
    v_min, v_max = float(np.min(v)), float(np.max(v))
    v_med = float(np.median(v))

    fastest_row = df_use.iloc[int(np.argmin(v))]
    slowest_row = df_use.iloc[int(np.argmax(v))]
    fastest_pl = fastest_row.get("plasmid", "NA")
    slowest_pl = slowest_row.get("plasmid", "NA")

    return textwrap.dedent(
        f"""
        {label} ({n} constructs) show half-times ranging from {v_min:.2f} h
        to {v_max:.2f} h (median {v_med:.2f} h).
        The fastest response is observed for {fastest_pl} (~{v_min:.2f} h),
        while the slowest tuner is {slowest_pl} (~{v_max:.2f} h).
        Together, this defines the dynamic range of how quickly degron–Cas
        systems approach their new steady state after a perturbation.
        """
    ).strip()

summarize_hill

summarize_hill(df)

Summary for Hill_parameters.csv table.

Source code in scripts/step_9_generate_report.py
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def summarize_hill(df: pd.DataFrame) -> str:
    """
    Summary for Hill_parameters.csv table.
    """
    df = df.copy()
    cols = {c: c.strip() for c in df.columns}
    df = df.rename(columns=cols)

    # accept K/k in any capitalization
    if "k" not in df.columns:
        for alt in ("K", "k", "midpoint", "ec50"):
            if alt in df.columns:
                df = df.rename(columns={alt: "k"})
                break

    n_rows = len(df)
    k_vals = df["k"].to_numpy(float)
    n_vals = df["n"].to_numpy(float)

    k_min, k_max = float(np.min(k_vals)), float(np.max(k_vals))
    n_min, n_max = float(np.min(n_vals)), float(np.max(n_vals))
    n_med = float(np.median(n_vals))

    steep_row = df.iloc[int(np.argmax(n_vals))]
    graded_row = df.iloc[int(np.argmin(n_vals))]

    steep_pl = steep_row.get("plasmid", "NA")
    steep_n = float(steep_row["n"])

    graded_pl = graded_row.get("plasmid", "NA")
    graded_n = float(graded_row["n"])

    return textwrap.dedent(
        f"""
        Steady-state dose–response fits (Hill curves) were obtained for {n_rows}
        constructs. Effective midpoints K span approximately {k_min:.3g}{k_max:.3g},
        indicating how much dTAG-13 is required to tune the system into its
        responsive regime.

        Hill exponents n range from {n_min:.2f} to {n_max:.2f} (median {n_med:.2f}).
        The steepest, most switch-like response is seen in {steep_pl} (n ≈ {steep_n:.2f}),
        whereas {graded_pl} (n ≈ {graded_n:.2f}) behaves more like a graded analog tuner.
        Together, these parameters quantify how sharply degron–Cas constructs
        transition from "off" to "on" as the degrader dose increases.
        """
    ).strip()

summarize_noise

summarize_noise(noise_ts, noise_hier)

Summary for single-cell noise tables.

Source code in scripts/step_9_generate_report.py
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def summarize_noise(noise_ts: Optional[pd.DataFrame],
                    noise_hier: Optional[pd.DataFrame]) -> str:
    """
    Summary for single-cell noise tables.
    """
    if noise_ts is None or noise_ts.empty:
        return "Single-cell noise tables were not available."

    df = noise_ts.copy()
    text = []

    for ch, mean_col, cv_col in [
        ("BFP", "mean_BFP", "cv2_BFP"),
        ("mCherry", "mean_mCherry", "cv2_mCherry"),
    ]:
        if mean_col not in df.columns or cv_col not in df.columns:
            continue
        hi = df.groupby("plasmid")[cv_col].median().sort_values(ascending=False)
        lo = df.groupby("plasmid")[cv_col].median().sort_values(ascending=True)
        if hi.empty:
            continue

        noisy_pl = hi.index[0]
        quiet_pl = lo.index[0]
        noisy_cv = float(hi.iloc[0])
        quiet_cv = float(lo.iloc[0])

        text.append(
            f"For {ch}, median CV² across time and replicates spans roughly "
            f"{lo.iloc[0]:.3g}{hi.iloc[-1]:.3g}. The noisiest construct "
            f"is {noisy_pl} (CV² ≈ {noisy_cv:.3g}), whereas {quiet_pl} shows "
            f"the quietest expression (CV² ≈ {quiet_cv:.3g})."
        )

    if not text:
        return "Could not extract channel-specific noise summaries."

    prefix = (
        "Single-cell flow cytometry events were propagated through the same gates\n"
        "as the kinetic analysis, and CV² was computed for both repressor (BFP)\n"
        "and reporter (mCherry). This quantifies how noisy each construct is at\n"
        "the single-cell level, beyond mean-level behavior.\n"
    )
    return prefix + "\n".join(text)

summarize_sobol_global

summarize_sobol_global(sobol_all)

Summarize global Sobol indices (uq_sensitivity/sobol_indices_all.csv). Expected cols: model, metric, param, ST.

Source code in scripts/step_9_generate_report.py
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
def summarize_sobol_global(sobol_all: Optional[pd.DataFrame]) -> str:
    """
    Summarize global Sobol indices (uq_sensitivity/sobol_indices_all.csv).
    Expected cols: model, metric, param, ST.
    """
    if sobol_all is None or sobol_all.empty:
        return "Global Sobol sensitivity results were not available."

    df = sobol_all.copy()
    need = {"model", "metric", "param", "ST"}
    if not need.issubset(df.columns):
        return f"sobol_indices_all.csv missing expected columns: {sorted(need)}."

    agg = (df.groupby(["model", "metric", "param"], as_index=False)["ST"]
             .mean()
             .rename(columns={"ST": "ST_mean"}))

    lines = []
    for (model, metric), sub in agg.groupby(["model", "metric"]):
        sub = sub.sort_values("ST_mean", ascending=False).head(3)
        tops = ", ".join([f"{r['param']} (ST≈{r['ST_mean']:.2f})" for _, r in sub.iterrows()])
        lines.append(f"{model} / {metric}: top drivers are {tops}.")

    return (
        "Sobol total-order sensitivity (ST) quantifies which fitted parameters most strongly "
        "control each performance metric under the ODE model.\n\n"
        + "\n".join(lines)
    )