scripts.step_7_design_selection_and_map¶
step_7_design_selection_and_map.py¶
This script analyzes the simulated design space of genetic constructs to identify top-performing designs based on dynamic range and response time. It ranks designs using a composite score that favors high dynamic range and low response time (t50). The top candidates are visualized in a performance map alongside real experimental constructs for context. The final selected designs are saved for further experimental validation.
compute_metrics ¶
compute_metrics(ts)
Compute performance metrics from the time series data.
| Parameters: |
|
|---|
Returns: dict: Computed metrics: dynamic_range, t50, overshoot.
Source code in scripts/step_7_design_selection_and_map.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | |
ode_rhs ¶
ode_rhs(t, y, t_up, K, n, alpha)
ODE right-hand side for the genetic construct model.
Args t (float): Current time. y (list): Current state [R, Y]. t_up (float): Half-time for upregulation. K (float): Hill constant. n (float): Hill coefficient. alpha (float): Degradation rate of Y.
Returns list: Derivatives [dR/dt, dY/dt].
Source code in scripts/step_7_design_selection_and_map.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | |
simulate_construct ¶
simulate_construct(t_up, K, n, alpha, t_end=72.0, dt=0.05)
Simulate the genetic construct dynamics over time.
| Parameters: |
|---|
Returns: pd.DataFrame: Time series of Y over time.
Source code in scripts/step_7_design_selection_and_map.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | |