scripts.step_4b_model_driven_design_scan

Step 4b – Model-driven design scan for analog gene tuners.

This script performs the following steps: 1) Loads measured parameter ranges from CSV files. 2) Samples a design space over key parameters (K, n, t_up, alpha, delay_kd). 3) Simulates repression dynamics for each sampled design. 4) Computes design metrics: dynamic range, t10-90, t50, overshoot. 5) Saves the results to a CSV file.

compute_design_metrics

compute_design_metrics(ts)

Given a time series (time, Y), compute dynamic range and timing metrics.

Parameters

ts : pd.DataFrame Time series with columns: time, Y

Returns

dict Keys: dynamic_range, t10_90, t50, overshoot

Source code in scripts/step_4b_model_driven_design_scan.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def compute_design_metrics(ts: pd.DataFrame) -> Dict[str, float]:
    """
    Given a time series (time, Y), compute dynamic range and timing metrics.

    Parameters
    ----------
    ts : pd.DataFrame
        Time series with columns: time, Y

    Returns
    -------
    dict
        Keys: dynamic_range, t10_90, t50, overshoot
    """
    t = ts["time"].to_numpy(float)
    y = ts["Y"].to_numpy(float)

    if len(t) < 3:
        return {
            "dynamic_range": np.nan,
            "t10_90": np.nan,
            "t50": np.nan,
            "overshoot": np.nan,
        }

    y_min = float(y.min())
    y_max = float(y.max())
    dynamic_range = y_max - y_min

    # Define initial and final levels from early and late time windows
    y0 = float(y[0])
    y_ss = float(y[-1])
    total_change = y_ss - y0
    if abs(total_change) < 1e-9:
        t10_90 = np.nan
        t50 = np.nan
    else:
        y10 = y0 + 0.10 * total_change
        y90 = y0 + 0.90 * total_change
        y50 = y0 + 0.50 * total_change

        def _t_at_level(level):
            idx = np.where(np.sign(y - level) != np.sign(y[0] - level))[0]
            if len(idx) == 0:
                return np.nan
            i = idx[0]
            if i == 0:
                return float(t[0])
            # linear interpolation
            t1, t2 = t[i - 1], t[i]
            y1, y2 = y[i - 1], y[i]
            if y2 == y1:
                return float(t2)
            return float(t1 + (level - y1) * (t2 - t1) / (y2 - y1))

        t10 = _t_at_level(y10)
        t90 = _t_at_level(y90)
        t50 = _t_at_level(y50)
        t10_90 = t90 - t10 if (np.isfinite(t10) and np.isfinite(t90)) else np.nan

    # Overshoot relative to late-time mean
    y_tail = y[int(0.8 * len(y)):]
    y_tail_mean = float(y_tail.mean())
    overshoot = float(y.max() - y_tail_mean)

    return {
        "dynamic_range": dynamic_range,
        "t10_90": t10_90,
        "t50": t50,
        "overshoot": overshoot,
    }

load_measured_parameter_ranges

load_measured_parameter_ranges()

Load measured parameter tables and derive min/max ranges for each.

Returns

dict Keys: 'K', 'n', 't_up', 't_down', 'alpha', 'delay_rev', 'delay_kd' Values: (min, max) tuples.

Source code in scripts/step_4b_model_driven_design_scan.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def load_measured_parameter_ranges() -> Dict[str, Tuple[float, float]]:
    """
    Load measured parameter tables and derive min/max ranges for each.

    Returns
    -------
    dict
        Keys: 'K', 'n', 't_up', 't_down', 'alpha', 'delay_rev', 'delay_kd'
        Values: (min, max) tuples.
    """
    # t_down (Rev half-times)
    t_down = _read_norm(os.path.join(PARAM_PATH, "half_times_downregulation.csv"))
    if "halftime" in t_down.columns and "t_down" not in t_down.columns:
        t_down = t_down.rename(columns={"halftime": "t_down"})
    # t_up (KD half-times)
    t_up = _read_norm(os.path.join(PARAM_PATH, "half_times_upregulation.csv"))
    if "halftime" in t_up.columns and "t_up" not in t_up.columns:
        t_up = t_up.rename(columns={"halftime": "t_up"})

    # Hill parameters (K, n)
    hills = _read_norm(os.path.join(PARAM_PATH, "Hill_parameters.csv"))
    if "K" in hills.columns and "k" not in hills.columns:
        hills = hills.rename(columns={"K": "k"})
    if "n" not in hills.columns:
        raise KeyError("Hill_parameters.csv must contain a column 'n'.")

    # alpha (mCherry decay)
    alpha_df = _read_norm(os.path.join(PARAM_PATH, "alphamcherry.csv"))
    if "alpha" not in alpha_df.columns:
        for alt in ("alpha_mcherry", "alphamcherry", "a"):
            if alt in alpha_df.columns:
                alpha_df = alpha_df.rename(columns={alt: "alpha"})
                break
    if "alpha" not in alpha_df.columns:
        raise KeyError("alphamcherry.csv must contain 'alpha' or equivalent.")

    alpha_vals = alpha_df["alpha"].to_numpy(float)

    # optional delays
    delay_rev_path = os.path.join(PARAM_PATH, "delays_derepression.csv")
    delay_kd_path = os.path.join(PARAM_PATH, "delays_repression.csv")

    def _delay_range(path: str, col_name: str) -> Tuple[float, float]:
        if not os.path.exists(path):
            return (0.0, 8.0)  # fallback wide default
        df = pd.read_csv(path)
        if col_name not in df.columns:
            num_cols = [c for c in df.columns if df[c].dtype != "O"]
            if not num_cols:
                return (0.0, 8.0)
            col_name = num_cols[0]
        vals = df[col_name].to_numpy(float)
        return float(vals.min()), float(vals.max())

    delay_rev_min, delay_rev_max = _delay_range(delay_rev_path, "d_rev")
    delay_kd_min, delay_kd_max = _delay_range(delay_kd_path, "d_rev")

    ranges = {
        "K": (float(hills["k"].min()), float(hills["k"].max())),
        "n": (float(hills["n"].min()), float(hills["n"].max())),
        "t_up": (float(t_up["t_up"].min()), float(t_up["t_up"].max())),
        "t_down": (float(t_down["t_down"].min()), float(t_down["t_down"].max())),
        "alpha": (float(alpha_vals.min()), float(alpha_vals.max())),
        "delay_rev": (delay_rev_min, delay_rev_max),
        "delay_kd": (delay_kd_min, delay_kd_max),
    }
    return ranges

ode_rhs

ode_rhs(t, y, t_up, K, n, alpha)

ODE right-hand side for repression dynamics:

dR = beta - R(ln2/t_up) dY = (K^n/(K^n + R^n)) - alphaY

We set beta = ln(2)/t_up so that R rises with half-time t_up.

Parameters

t : float Current time (not used, as ODE is time-invariant). y : np.ndarray Current state vector [R, Y]. t_up, K, n, alpha : float Model parameters.

Returns

np.ndarray Derivatives [dR, dY].

Source code in scripts/step_4b_model_driven_design_scan.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def ode_rhs(t: float, y: np.ndarray,
            t_up: float, K: float, n: float, alpha: float) -> np.ndarray:
    """
    ODE right-hand side for repression dynamics:

    dR = beta - R*(ln2/t_up)
    dY = (K^n/(K^n + R^n)) - alpha*Y

    We set beta = ln(2)/t_up so that R rises with half-time t_up.

    Parameters
    ----------
    t : float
        Current time (not used, as ODE is time-invariant).
    y : np.ndarray
        Current state vector [R, Y].
    t_up, K, n, alpha : float
        Model parameters.

    Returns
    -------
    np.ndarray
        Derivatives [dR, dY].
    """
    R, Y = y
    t_up = max(float(t_up), 1e-6)
    K = max(float(K), 1e-12)
    n = max(float(n), 1e-6)
    alpha = max(float(alpha), 1e-12)

    beta = math.log(2.0) / t_up
    R_pos = max(R, 0.0)
    Kn = K ** n
    Rn = R_pos ** n

    dR = beta - R_pos * (math.log(2.0) / t_up)
    dY = (Kn / (Kn + Rn)) - alpha * Y
    return np.array([dR, dY], dtype=float)

sample_design_space

sample_design_space(ranges, n_samples=500, seed=13)

Sample a design space over (K, n, t_up, t_down, delay_kd) using uniform sampling within measured min/max ranges, slightly padded.

Parameters

ranges : dict Keys: 'K', 'n', 't_up', 't_down', 'alpha', 'delay_kd' Values: (min, max) tuples. n_samples : int Number of samples to generate. seed : int Random seed for reproducibility.

Returns

pd.DataFrame with columns: design_id, K, n, t_up, t_down, alpha, delay_kd

Source code in scripts/step_4b_model_driven_design_scan.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def sample_design_space(ranges: Dict[str, Tuple[float, float]],
                        n_samples: int = 500,
                        seed: int = 13) -> pd.DataFrame:
    """
    Sample a design space over (K, n, t_up, t_down, delay_kd) using uniform
    sampling within measured min/max ranges, slightly padded.

    Parameters
    ----------
    ranges : dict
        Keys: 'K', 'n', 't_up', 't_down', 'alpha', 'delay_kd'
        Values: (min, max) tuples.
    n_samples : int
        Number of samples to generate.
    seed : int
        Random seed for reproducibility.

    Returns
    -------
    pd.DataFrame with columns: design_id, K, n, t_up, t_down, alpha, delay_kd

    """
    rng = np.random.default_rng(seed)

    def pad(min_val, max_val, frac=0.25):
        span = max_val - min_val
        if span <= 0:
            span = max(abs(max_val), 1.0)
        return max(min_val * (1 - frac), 1e-6), max_val * (1 + frac)

    K_min, K_max = pad(*ranges["K"])
    n_min, n_max = pad(*ranges["n"])
    t_up_min, t_up_max = pad(*ranges["t_up"])
    t_down_min, t_down_max = pad(*ranges["t_down"])
    alpha_min, alpha_max = pad(*ranges["alpha"])
    delay_kd_min, delay_kd_max = pad(*ranges["delay_kd"])

    rows = []
    for i in range(n_samples):
        K = rng.uniform(K_min, K_max)
        n = rng.uniform(n_min, n_max)
        t_up = rng.uniform(t_up_min, t_up_max)
        t_down = rng.uniform(t_down_min, t_down_max)  # kept for completeness
        alpha = rng.uniform(alpha_min, alpha_max)
        delay_kd = rng.uniform(delay_kd_min, delay_kd_max)
        rows.append({
            "design_id": f"D{i:04d}",
            "K": K,
            "n": n,
            "t_up": t_up,
            "t_down": t_down,
            "alpha": alpha,
            "delay_kd": delay_kd,
        })
    return pd.DataFrame.from_records(rows)

simulate_repression

simulate_repression(t_up, K, n, alpha, delay, t_end=72.0, dt=0.05)

Simulate repression trajectory Y(t) with a display delay (time shift).

Parameters

t_up, K, n, alpha : float Model parameters. delay : float Display-only shift on the t-axis (>=0). t_end : float End time (hours) for simulation. dt : float Time step for output.

Returns

pd.DataFrame with columns: time, R, Y

Source code in scripts/step_4b_model_driven_design_scan.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def simulate_repression(t_up: float, K: float, n: float, alpha: float,
                        delay: float,
                        t_end: float = 72.0,
                        dt: float = 0.05) -> pd.DataFrame:
    """
    Simulate repression trajectory Y(t) with a display delay (time shift).

    Parameters
    ----------
    t_up, K, n, alpha : float
        Model parameters.
    delay : float
        Display-only shift on the t-axis (>=0).
    t_end : float
        End time (hours) for simulation.
    dt : float
        Time step for output.

    Returns
    -------
    pd.DataFrame with columns: time, R, Y
    """
    t_eval = np.arange(0.0, t_end + dt / 2, dt)
    # Initial condition: R(0)=0, Y(0)=1/alpha → alpha*Y starts at 1 (matching step_3)
    y0 = np.array([0.0, 1.0 / max(alpha, 1e-12)], dtype=float)

    sol = solve_ivp(
        fun=lambda t, y: ode_rhs(t, y, t_up=t_up, K=K, n=n, alpha=alpha),
        t_span=(t_eval[0], t_eval[-1]),
        y0=y0,
        t_eval=t_eval,
        method="LSODA",
        rtol=1e-7,
        atol=1e-9,
    )
    if not sol.success:
        raise RuntimeError(f"ODE solver failed: {sol.message}")

    R = sol.y[0, :]
    Y = sol.y[1, :] * alpha  # scale back (Y*alpha)
    df = pd.DataFrame({"time": t_eval + delay, "R": R, "Y": Y})
    return df