scripts.step_4a_single_cell_hierarchical_noise¶
Step 4a – Single-cell noise and hierarchical summaries for CasTuner constructs.
This script processes single-cell time-course flow cytometry data to compute noise metrics (mean, variance, CV²) for BFP and mCherry expression. It applies gating identical to prior steps, subtracts NFC background, and summarizes noise metrics per (plasmid, experiment, replicate, time) group. Finally, it computes hierarchical summaries per construct using a simple normal–normal partial pooling approach.
Outputs
- parameters/single_cell_noise_timeseries.csv : Per-(plasmid, exp, rep, time) noise metrics.
- parameters/single_cell_noise_hierarchical.csv : Hierarchical summaries per construct.
apply_boundary_gate ¶
apply_boundary_gate(df)
Apply boundary gate on FSC-A and SSC-A. If no events pass, return raw data.
Parameters¶
df : pd.DataFrame Flow cytometry events.
Returns¶
pd.DataFrame Gated events.
Source code in scripts/step_4a_single_cell_hierarchical_noise.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
apply_singlet_gate ¶
apply_singlet_gate(df)
Apply singlet gate based on FSC-H / FSC-A ratio. If no events pass, return raw data.
Parameters¶
df : pd.DataFrame Flow cytometry events.
Returns¶
pd.DataFrame Gated events.
Source code in scripts/step_4a_single_cell_hierarchical_noise.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | |
compute_nfc_background ¶
compute_nfc_background(nfc_dir)
Compute NFC background medians for BFP and mCherry. Parameters
nfc_dir : str Directory containing NFC .fcs files. Returns
Tuple[float, float] (mBFP_neg, mmCherry_neg)
Source code in scripts/step_4a_single_cell_hierarchical_noise.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | |
hierarchical_summary ¶
hierarchical_summary(noise_df)
For each plasmid (and exp), compute pooled noise metrics and uncertainty.
Parameters¶
noise_df : pd.DataFrame Per-(plasmid, exp, rep, time) noise metrics with columns: plasmid, exp, rep, time, mean_BFP, var_BFP, cv2_BFP, mean_mCherry, var_mCherry, cv2_mCherry, n_cells
Returns¶
pd.DataFrame with columns: plasmid, exp, n_groups, mean_BFP, mean_BFP_se, mean_BFP_ci_low, mean_BFP_ci_high, mean_mCherry, mean_mCherry_se, mean_mCherry_ci_low, mean_mCherry_ci_high, cv2_BFP, cv2_BFP_se, cv2_BFP_ci_low, cv2_BFP_ci_high, cv2_mCherry, cv2_mCherry_se, cv2_mCherry_ci_low, cv2_mCherry_ci_high
Source code in scripts/step_4a_single_cell_hierarchical_noise.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | |
load_single_cell_timecourse ¶
load_single_cell_timecourse(exp_filter=None)
Load single-cell events from time-course FCS, gate, subtract NFC, and attach metadata (plasmid, exp, rep, time).
Parameters¶
exp_filter : {None, "Rev", "KD"}, optional If provided, restrict to that experiment type.
Returns¶
pd.DataFrame Columns: plasmid, exp, rep, time, BFP, mCherry
Source code in scripts/step_4a_single_cell_hierarchical_noise.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | |
parse_timecourse_name ¶
parse_timecourse_name(name)
Extract (plasmid, exp, rep, time) from filename stem.
Expected pattern
Source code in scripts/step_4a_single_cell_hierarchical_noise.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | |
summarize_noise_per_group ¶
summarize_noise_per_group(events)
Compute noise metrics per (plasmid, exp, rep, time).
Parameters¶
events : pd.DataFrame Single-cell events with columns: plasmid, exp, rep, time, BFP, mCherry
Returns¶
pd.DataFrame with columns: plasmid, exp, rep, time, mean_BFP, var_BFP, cv2_BFP, mean_mCherry, var_mCherry, cv2_mCherry, n_cells
Source code in scripts/step_4a_single_cell_hierarchical_noise.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | |