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Hyperplanes

1.5

e Hyperplanes are a way to divide
(classify) your data. X
e For p-dimensional data the
hyperplane will be of dimension 81

p-1.
Mathematical definition

e For a two dimensional data the

hyperplane would be defined as:
Bo+ P1X1+ B2 X2 =0
e F[or n—dimenSional data -1'.5 -1|.0 -(;.5 0!0 ol.s 1?0 175
Xi

Bo + B1X1 + 2 X9+ ...+ ﬁpo =0
e For classification:

Bo+ 1 X1+ B2 Xo+... +ﬁpo >0, | Po+ Biki+ Paks s +.8po <0,



Maximal Margin
Classifier

e There are potentially infinite
number of ways in which
you can divide the data
using a hyperplane.

e One way to find a good
hyperplane is to use a
Maximal Margin Classifier.

e The Maximal Margin
Classifier is composed of
three components:

o Dividing hyperplane
o Supporting vectors
o Margins




Construction of the Maximal Margin Classifier

maximize M
/307:6)13-“7:3})7]\4

p
subject to Z B}z =.1,
j=1

yi(Bo + Bixi1 + Boxiog + ...+ Bpxip) > M Vi=1,...,n.

e Equation three ensures that each observation is classified correctly for
all the observations provided that M is positive.

e The second equation allows one to calculate the perpendicular
distance of an observation from the hyperplane using the equation:

Yi(Bo + Pr1zir + Bazia + ... + BpZip)-

e Together equations two and three ensure that each observation is on
the correct side of the hyperplane and at least a distance M from the

hyperplane.
e M represents the margin of our hyperplane, and the optimization
problem chooses 8, B,, . - ., Bp to maximize M



Support Vector Classifier

Problem 1: Non-separable data
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Support Vector Classifier

Problem 2: Noisy data > overfitting to training data




Support Vector Classifier

The support vector classifier maximizes a soft margin.

Xo




Support Vector Classifier

The support vector classifier maximizes a soft margin.

maximize M
Bo,B1,.--;8p,€1,--..€n, M
p
subject to Z ,,!3]2- =1
g—=1

ljz(BO = = }'81 e B !821172'2 G SRR ‘Bp;l’.z-p) 2 f\[(l — G'i):

mn
g= 0, ZQ <G
1—1

€- slack variable allowing misclassifications
C- tuning parameter




Support Vector Classifier

€ = 0: ith observation on the correct side of the margin
€ > 0: ith observation on the wrong side of the margin
€ > 1: ith observation on the wrong side of the hyperplane




Support Vector Classifier

€ = 0: ith observation on the correct side of the margin
€ > 0: ith observation on the wrong side of the margin
€ > 1: ith observation on the wrong side of the hyperplane

maximize M

p
subject to Z ,;"_5’]2. =1,
j=1
ljz(go -+ 31 e B "13211’,1'2 + -4 ,.Bpa"’ip) 2 A[(l - 6-1:)_.‘

n
€4 Z Oﬁ Zéi S C’Y-.
=1




Support Vector Classifier

large C: wider margin, more
misclassifications allowed A o

> high bias-low variance

small C: small margin, less
misclassifications allowed

> low bias-high variance

1 2 -1 0
Xy Xi

only observations that either lie on the margin or that violate the margin
will affect the hyperplane -> support vectors
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Support Vector Machines

Problem: Non-linear decision boundaries
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Support Vector Machines

Idea: enlarge the feature space to get a separating hyperplane in a
higher dimension

Input Space Feature Space




Support Vector Machines

The linear support vector classifier can be represented as:

mn p
— »'30 + Z 87 <l": mi)a with J?'i s £Lq , Z : lzJ$ZIJ Z
1=1

j=1

To estimate the parameters a,, ..., a_and 3., all we need are(g’)a
inner products (x, x.,) between all pairs of training observations. a. is
nonzero only for the support vectors in the solution

— g\ Ly Leg) s
o ; 23T, Ti) with S as indices of support points




Support Vector Machines

Replace the inner product with a generalization of the form K(x,x)
called kernel function

f(l) = 30 -+ Z (11[((1., ;'Ealj).
€S
_ p
Linear kernel K(z;, @) = Z?'Uija?i’ja
j=1

p
K(IZ, Ll?,lj/) = (1 + Z IZJIZIJ)d
j=1

Polynomial kernel of degree ‘d’

Radial kernel

p
Koy =expl—y Y oy — o) )

j=1




Support Vector Machines

Polynomial kernel (degree = 3) Radial kernel




SVM ( > 2 Classes)

As defined before, it works for K > 2 classes.

OVA One versus All. Fit K different 2-class SVM classifiers f LX), k=1,
, K ; each class versus the rest. Classify x to the class for Whlch 7 ( ‘)
IS Iargest.

K
OVO One versus One. Fit all | , |pairwise classifiers f,(x). Classify x to

the class that wins the most pairwise competitions.

Which to choose? If K is not too large, use OVO.




Support Vector versus Logistic Regression ?

With f(X) = ﬂ0+ p X+ oo+ ,Bpo, can be written as:

minimize Z max[O 1=y, f ]+ /12 ﬂ2
Poby--B,Li=1

= This has the form
m SVM Loss

= Logistic Regression Loss /OSS p/US penalty.

The loss is known as the
hinge loss.

Loss
4
l

Very similar to “loss” in logistic
regression

o 000 == (negative log-likelihood).

Yi(Bo + Bixin + ... + Bpzip)



Which to use: SVM or Logistic Regression ?

« When classes are (nearly) separable, SVM does better than LR. So
does LDA.

« When not, LR (with ridge penalty) and SVM very similar.

* If you wish to estimate probabilities, LR is the choice.

- For nonlinear boundaries, kernel SVMs are popular. Can use kernels
with LR and LDA as well, but computations are more expensive.




Kxample in R

The e1071 library contains implementations for a number of statistical
learning methods. In particular, the svm() function can be used to fit a
support vector classifier when the argument kernel = "linear" is used.
> set.seed (1)

> X <- matrix(rnorm (20 * 2), ncol = 2)

>y <- c(rep(-1, 10), rep(1, 10))

> X[y ==1,]<-x[y==1,1+1

> plot(x, col = (3 - y))

Next, we fit the support vector classifier.

> dat <- data.frame(x = x, y = as.factor(y))

> library(e1071)

> svmfit <- svm(y ~ ., data = dat , kernel = "linear", cost = 10,
scale = FALSE)

We can now plot the support vector classifier obtained
> plot(svmfit , dat)



The support vectors are plotted as crosses and the remaining observations
are plotted as circles; we see here that there are seven support vectors. We
can determine their identities as follows:

> svmfitSindex

[1112571416 17

We can obtain some basic information about the support vector classifier fit
using the summary() command:

> summary(svmfit)

Call:

svm(formula =y ~ ., data = dat, kernel = "linear", cost = 10,

scale = FALSE)

Parameters:
SVM -Type: C- classification
SVM -Kernel: linear
cost: 10
Num(ber o)f Support Vectors: 7
4 3
Number of Classes: 2
Levels:
-1 1
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Questions?




