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Hyperplanes

● Hyperplanes are a way to divide 
(classify) your data.

● For p-dimensional data the 
hyperplane will be of dimension 
p-1.

Mathematical definition

● For a two dimensional data the 
hyperplane would be defined as:

● For n-dimensional data: 

● For classification:



Maximal Margin 
Classifier

● There are potentially infinite 
number of ways in which 
you can divide the data 
using a hyperplane.

● One way to find a good 
hyperplane is to use a 
Maximal Margin Classifier.

● The Maximal Margin 
Classifier is composed of 
three components:
○ Dividing hyperplane
○ Supporting vectors
○ Margins



Construction of the Maximal Margin Classifier

● Equation three ensures that each observation is classified correctly for 
all the observations provided that M is positive. 

● The second equation allows one to calculate the perpendicular 
distance of an observation from the hyperplane using the equation:

● Together equations two and three ensure that each observation is on 
the correct side of the hyperplane and at least a distance M from the 
hyperplane.

● M represents the margin of our hyperplane, and the optimization 
problem chooses β0, β1, . . . , βp to maximize M



Support Vector Classifier

Problem 1: Non-separable data  



Support Vector Classifier

Problem 2: Noisy data > overfitting to training data



Support Vector Classifier

The support vector classifier maximizes a soft margin.



Support Vector Classifier

The support vector classifier maximizes a soft margin.

ε- slack variable allowing misclassifications
C- tuning parameter



Support Vector Classifier

ε = 0: ith observation on the correct side of the margin
ε > 0: ith observation on the wrong side of the margin 

ε > 1: ith observation on the wrong side of the hyperplane



Support Vector Classifier

ε = 0: ith observation on the correct side of the margin
ε > 0: ith observation on the wrong side of the margin 

ε > 1: ith observation on the wrong side of the hyperplane



Support Vector Classifier

large C: wider margin, more 
misclassifications allowed 

> high bias-low variance

small C: small margin, less 
misclassifications allowed 

> low bias-high variance

only observations that either lie on the margin or that violate the margin 
will affect the hyperplane => support vectors



Support Vector Machines

Problem: Non-linear decision boundaries



Support Vector Machines

Idea: enlarge the feature space to get a separating hyperplane in a 
higher dimension



Support Vector Machines

The linear support vector classifier can be represented as: 

with 

To estimate the parameters α1, . . . , αn and β0, all we need are the        
inner products ⟨xi, xi′⟩ between all pairs of training observations. αi is 
nonzero only for the support vectors in the solution

with S as indices of support points



Support Vector Machines

Replace the inner product with a generalization of the form K(x,xi) 
called kernel function

Linear kernel 

Polynomial kernel of degree ‘d’

Radial kernel



Support Vector Machines

  Polynomial kernel (degree = 3) Radial kernel



SVM ( > 2 Classes)

As defined before, it works for 𝑲 > 2 classes.

  

OVA One versus All. Fit 𝑲 different 2-class SVM classifiers          , 𝑘 = 1, . 
. . , 𝑲 ; each class versus the rest. Classify 𝑥* to the class for which            
is largest. 

  

OVO One versus One. Fit all        pairwise classifiers          . Classify 𝑥* to 
the class that wins the most pairwise competitions.    

Which to choose? If 𝑲 is not too large, use OVO.



Support Vector versus Logistic Regression ?

With       , can be written as: 

  

 

 

 

                

This has the form
loss plus penalty.

The loss is known as the  
hinge loss.

Very similar to “loss” in logistic 
regression  

(negative log-likelihood).



Which to use: SVM or Logistic Regression ?

• When classes are (nearly) separable, SVM does better than LR. So 
does LDA.

• When not, LR (with ridge penalty) and SVM very similar.

• If you wish to estimate probabilities, LR is the choice.

• For nonlinear boundaries, kernel SVMs are popular. Can use kernels 
with LR and LDA as well, but computations are more expensive.



Example in R
The e1071 library contains implementations for a number of statistical
learning methods. In particular, the svm() function can be used to fit a
support vector classifier when the argument kernel = "linear" is used.
> set.seed (1)
> x <- matrix(rnorm (20 * 2), ncol = 2)
> y <- c(rep(-1, 10), rep(1, 10))
> x[y == 1, ] <- x[y == 1, ] + 1
> plot(x, col = (3 - y))

Next, we fit the support vector classifier.
> dat <- data.frame(x = x, y = as.factor(y))
> library(e1071)
> svmfit <- svm(y ∼ ., data = dat , kernel = "linear", cost = 10, 
scale = FALSE)

We can now plot the support vector classifier obtained
> plot(svmfit , dat)



The support vectors are plotted as crosses and the remaining observations 
are plotted as circles; we see here that there are seven support vectors. We 
can determine their identities as follows:

> svmfit$index

[1] 1 2 5 7 14 16 17

We can obtain some basic information about the support vector classifier fit 
using the summary() command:
> summary(svmfit)
Call:
svm(formula = y ∼ ., data = dat , kernel = "linear", cost = 10,
scale = FALSE)

Parameters:
  SVM -Type: C- classification
SVM -Kernel: linear

cost: 10
Number of Support Vectors: 7

( 4 3 )
Number of Classes: 2
Levels:
   -1 1
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Questions?


