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Motivation

Scoring matrices => based on models appropriate to 
the analysis of molecular sequencing errors or biological 
mutation processes are presented.  

Alignment information (available) using an optimal 
scoring system is compared with that obtained using the 
BLASTN default scoring. 

Results of searches performed using BLASTN's default 
score matrix are compared with those using scores 
based on a mutational model in which transitions are 
more prevalent than transversions.
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Introduction

BLASTN => Match (+5)/Mismatch(-4)  

(Source Code) 

Natural mutations do not interconvert the various 
bases uniformly: transitions are favored over 
transversions by a factor of ~= 3.  

Scoring of closely related sequences should differ from 
that of sequences known to be distantly related => 
Markov transition model [Basis of PAM matrices].  

Such matrices can be derived for nucleotide sequence 
comparisons as well.
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Log odds score matrices

Mutation  --> Random & Independent  

A matrix M of probabilities for substituting base i by 
base j after any given amount of evolution can be 
calculated by successive iteration of a reference 
mutation matrix :  Mn = (M1)n 

M1 = matrix reflecting 99% sequence conservation and 
one point accepted mutation (1 PAM) per 100 bases. 

Mn = substitution probabilities after n PAMs.
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n-PAM log-odds score for aligning a given pair of 
bases is the log (base 2) of the relative chance of that 
pair occurring as a result of evolution as opposed to 
that occurring from a random alignment of two bases: 

Si,j = log (pi*Mni,j/pi*pj) 

pi = frequency of base i 

For pA = pC = pG = pT , Si,j  = log (4*Mni,j)  

If the base of the logarithm used in formula is taken to be 2, then 
scores can be thought of as being expressed in bits.
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At any given PAM distance, the expected 
information H (in bits) per alignment position can 
be calculated as described by Altschul:  

 

 H = Σ pi*pj*Si,j*2S
i,j  
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Table 1 :  
PAM scores for 
Uniform Mutational 
Model 
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Table 1 shows the log-odds scores (expressed in bits) 
derived using the uniform substitution model for various 
PAM distances.

For computational purposes, the scores may be multiplied 
by any positive number.  

At 30 PAMs (about 75% sequence conservation when 
back mutations are considered) the magnitudes of 
the match and mismatch scores are nearly identical, 
and at 47 PAMs the ratio is ~= 5 / 4.  

Scaled by a constant factor, these are the scores 
incorporated into BLASTN
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PAM distance corresponding to an alignment 
cannot be known before the alignment is found, 
but the information H(D) available at various PAM 
distances D is acheived when appropriate scores 
are used.  

Since one does not want to use hundreds of 
different scoring systems, an important question is 
over what range of actual PAM distances a 
given set of scores is nearly optimal ?
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Using a set of scores optimized for PAM distance E, it is 
simple to calculate the average score achieved when 
segments actually separated by PAM distance D are 
aligned.  

 Efficiency (E) = Si,j / H(D) <= 1 

 

PAM distances D from 0 to 100, using scores for the 
correct PAM distance but based on the uniform as 
opposed to biased mutational model yields an 
efficiency of about (100 – D/5)% => Loss of 
information (> 40 PAMs).
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Efficieny Curve for various PAM Matrices 
(E = 10,30,50,70,90)

At D = E, 
max(E) = 1.0 
 
Uniform  
Mutational  
Model 
 
For biased, 
Curve will      
get flatter.
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Given a desired degree of efficiency and a desired 
range of actual PAM distances, one may calculate how 
many different PAM matrices need be employed and 
which ones should be used. 
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Table 2: 
PAM scores for 
Biased Mutational 
Model  
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Table 2 shows a series of scoring matrices derived from a biased 

mutational model in which each transition is three times more likely 

than each transversion. 

At greater than 87 PAMs, transitions score positively and are 

therefore, conservative substitutions. 

If the mutations in the DNA sequences being compared are biased, 

then the scores of Table 2 distinguish true relationships from 

random noise more efficiently than those of Table 1. 
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Example [5’ upstream region]

 

Matches = 41  

Transitions = 13  

Transversions = 7 

Using PAM-50 scores, 

Biased Model => Alignment score =  39.75 bits (Table 2), p val = 0.013

But, 

Uniform Model => Alignment score = 34.88 bits (Table 1), p val = 0.31 

BIASED MODEL IS MORE STATISTICALLY SIGNIFICANT THAN A BIASED MODEL IS MORE STATISTICALLY SIGNIFICANT THAN A 
UNIFORM MUTATIONAL MODELUNIFORM MUTATIONAL MODEL

Information Loss ~ >12% (First 
three positions trimmed off)

Search : 
Query Length = 532  
Database Length = 65,868,799

BLASTP

Same Performance 
by BLASTN for 
PAM-47



16

Proposed Changes

Nucleic acid database searches with application specific scores are 
easily implemented using the BLASTP program.  

Minimal modification in source code: 

‘fq’ <--- uniform frequencies for A, C, G, and T in the array 

"QUERYLEN_MAX" <--- increase for long nucleotide sequences  

“W” <--- word size increase to 6, for the neighbourhood table                
                                                        (increase in search speed!) 

“T” <--- score threshold for including a word in the neighborhood table 
to a large positive value => Table containing only matches 

“X” <--- cutoff for extending word hits to 1000 in score matrix 
(hundreths of bits) => reduce the probability of prematurely truncating 
an aligned segment to less than 0.1% (Default = Heurisitic Adjustment)
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Computational cost to the increased flexibility achieved 
using BLASTP rather than BLASTN due to following reasons : 
●restricted to a four-character alphabet  
●employs hard-coded scores 
●uses a long word size <= significant loss of sensitivity 
for moderately diverged sequences.  

  

 Alignment shown the example is missed altogether by 
BLASTN because it lacks a run of 12 identities needed to 
generate a hit in the BLASTN neighborhood table.  
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BLASTP vs BLASTN

For maximum specificity,  

✔The sense and anti-sense strands are searched 
separately by BLASTP. 

 
✔BLASTN automatically searches both strands of the 
query.
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Protein Coding Regions

Consider two proteins that have diverged by D protein 
PAMs <=  D non synonymous point mutations at 
the DNA level. 

Broadly speaking, there tend to be over 1.5 
synonymous point mutations (SPM) for every 
nonsynonymous point mutation (NSPM):  

NSPM/SPM >= 1.5
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1 codon = 3 
nucleotides  

Each amino acid PAM 
=  (1 + 1.5)/3 ~ 0.8 
Nucleic acid PAMs

Table 3: 
Relative Information 
Available Using 
Protein
and Nucleic Acid-
Based PAM Scores
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Table 3 shows that at this distance, about 37% of the information 
available through an amino acid substitution matrix is lost using a 
nucleotide score matrix, even when a biased mutational model is 
employed.  

Alignments of sequences that have diverged by fewer than 
50 protein PAMs, the nucleic acid alphabet is more 
informative, while for more distant relationships the protein 
alphabet is superior. 

While an alignment of two proteins diverged by fewer than 50 PAMs 
may be more significant when viewed using the nucleic acid 
alphabet, such an alignment in any case need be no longer than 
15 residues to yield 30 bits of information.
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Applications

1. DNA Sequencing projects => CONTIG

2. Evaluating Sequence segements : 

● PCR 

● Oligonucleotide Hybridization Primers
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Conclusion

To achieve optimal sensitivity, we must use scoring 

scheme according to specific requirements.   

Scores based on a biased mutational model may 

improve the search sensitivity for conserved elements 

in non-coding regions. 

 



24

Reference

States, David J., Warren Gish, and Stephen F. Altschul. 
"Improved sensitivity of nucleic acid database 
searches using application-specific scoring matrices." 
Methods 3, no. 1 (1991): 66-70. 


