Predicting clinical outcomes of LIHC patients based on transcriptomic and epigenetic data

Abhinav Mishra, Kristin Köhler, Sanket Gosavi, Utkarsha Kandale

Introduction

Motivation To better predict the prognosis and outcomes of a disease it is necessary to integrate multiple biomarkers, and look at how they interact and affect each other.

Goal Are there potential epigenomic and transcriptomic biomarkers associated with the overall survival rate of patients with hepatocellular carcinomas?

Source <u>https://portal.gdc.cancer.gov/projects/TCGA-LIHC</u> (phs000178.v11.p8)

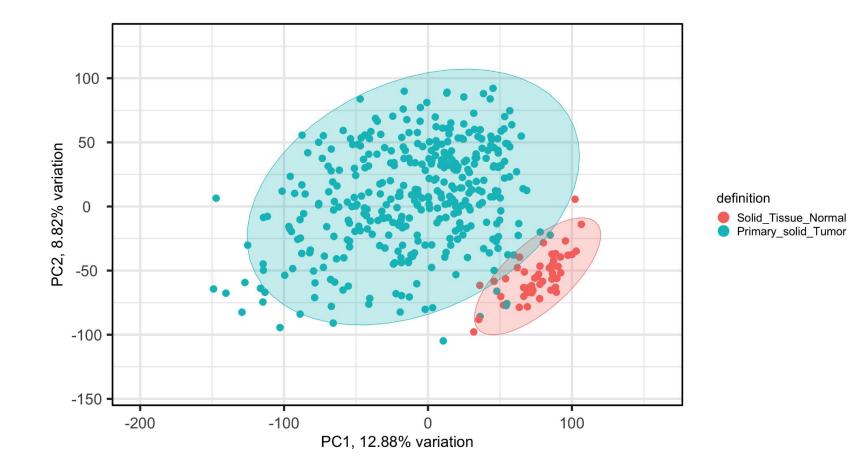
Disease Liver Hepatocellular Carcinoma (Adenomas and Adenocarcinomas)

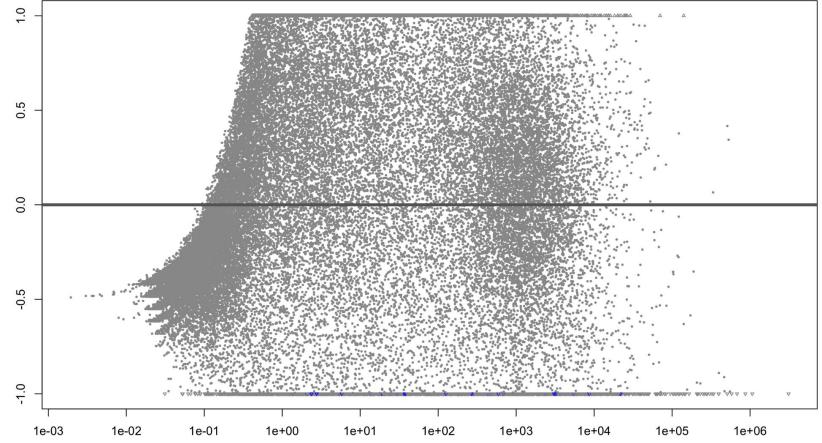
Data Type

- **Transcriptome profiling Gene Expression Quantification using RNA-Seq** in *tsv* format (371 cases)
- **DNA methylation Methylation beta values using methylation array** in *txt* format (377 cases)

Differential Gene Expression Analysis using DESeq2

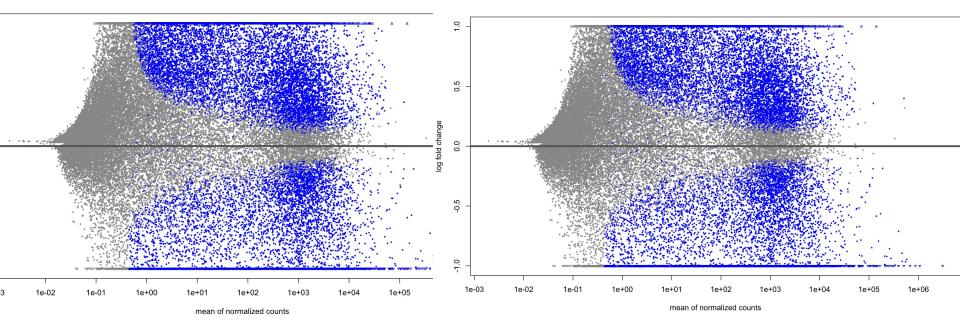
- 1. Querying the data in *GDC Data Portal*
- 2. Downloading the expression data
- 3. Data transformation, quality control and normalization
- 4. Hierarchical Clustering
- 5. Differential Gene Expression Analysis
- 6. Plot *Gene Count*: top 6 genes by *p-value*
- 7. ID Conversion: ENSEMBL to HGNC
- 8. Up/Down Regulated Genes
- 9. Diagnostic Plots
- 10. Shrinkage detection, and *MA plots* with outlier detection
- 11. Volcano plots by *p-adjusted value* and *logFC*
- 12. Accessing results for top "x" upregulated or downregulated genes

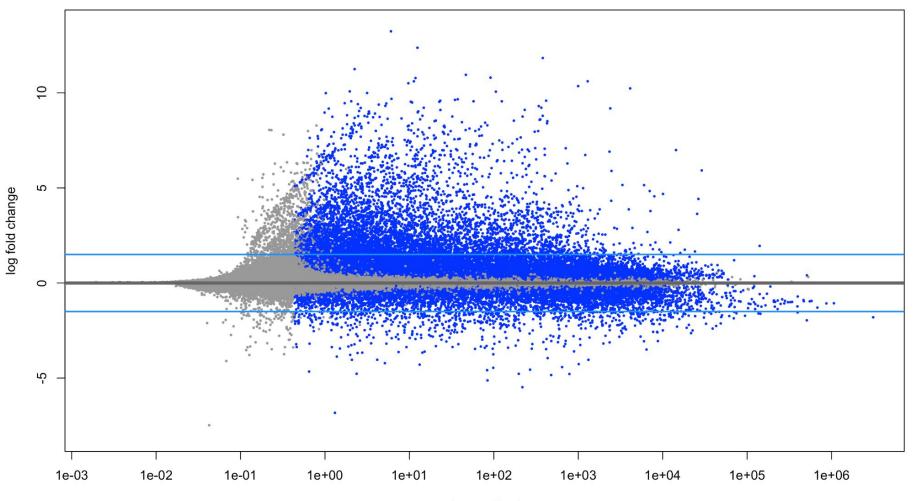




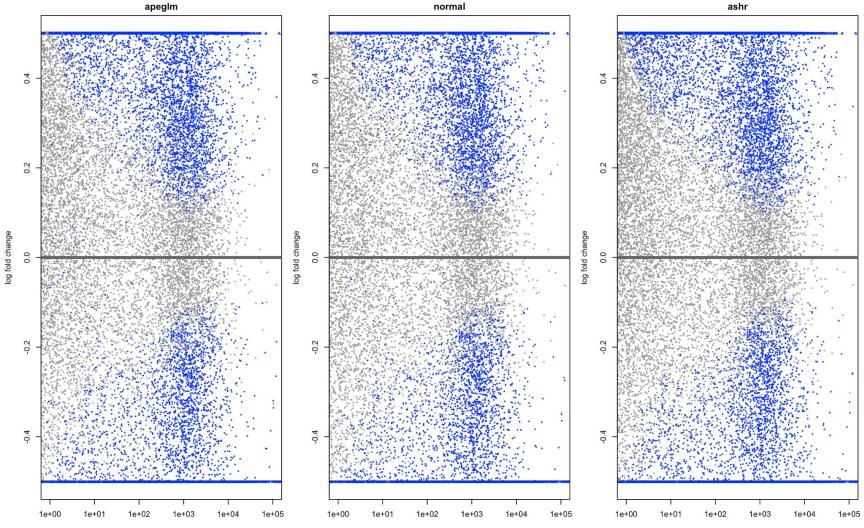
mean of normalized counts

log fold change





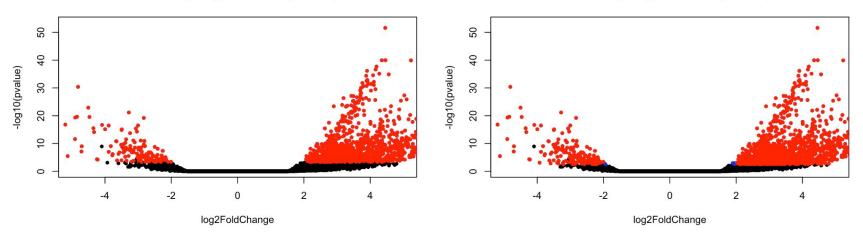
mean of normalized counts



mean of normalized counts

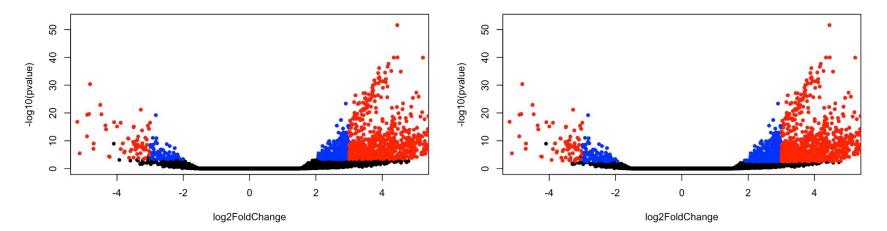
mean of normalized counts

mean of normalized counts



Volcano plot (p < 0.01 & logFC > 3)

Volcano plot (p < 0.05 & logFC > 3)



Methylation Data and Preprocessing

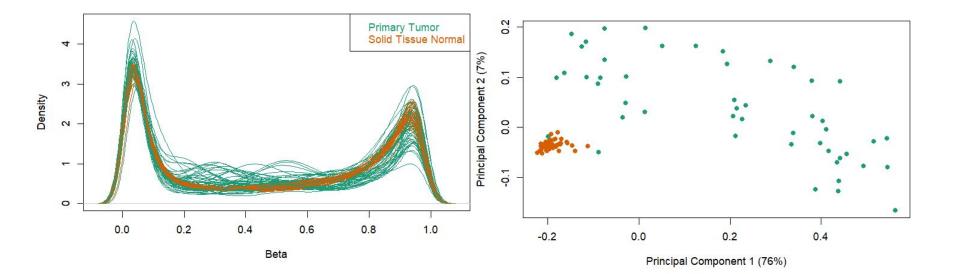
Data:

- 50 matched samples from tumor and normal tissue from TCGA
- Illumina methylation array 450k processed with SeSAMe
- files include beta-values of about 480.000 CpG loci

Preprocessing:

- exclusion of CpGs with missing beta-values
- exclusion of CpGs mapping to X or Y chromosome
- exclusion of CpGs overlapping with SNPs with MAF > 0.01

Quality Control and EDA



Differential methylation analyses

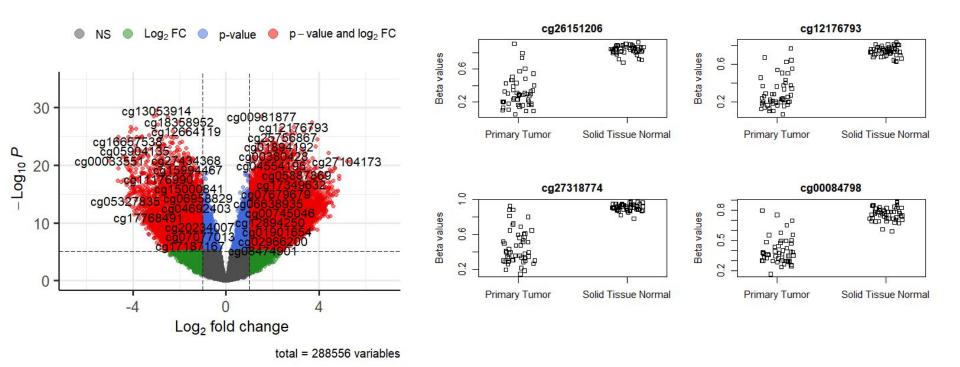
Limma

- extracted differential methylated loci (DML) between cancer and healthy tissues
- filtered the loci by adjusted p-value (<0.005) and mean beta value difference between groups (>0.2): 24457 DMLs

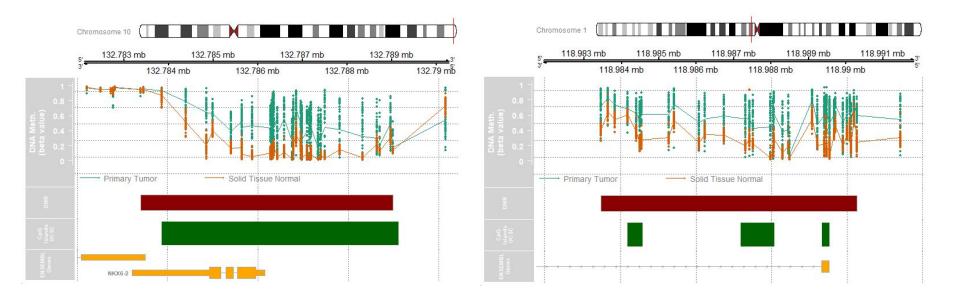
DMRcate:

• combined CpG loci to differential methylated regions (DMRs): 4003 DMRs

Differential methylated loci

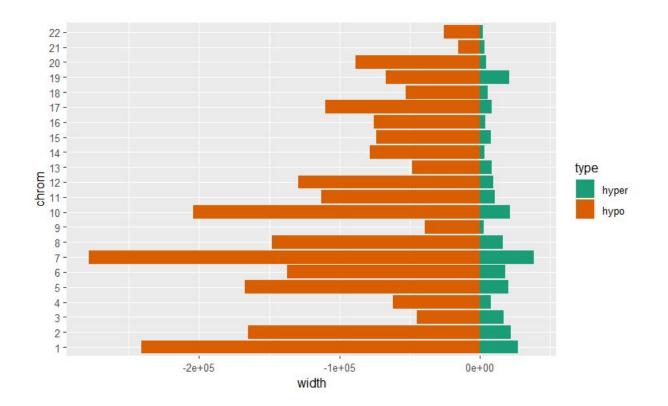


Differential methylated regions

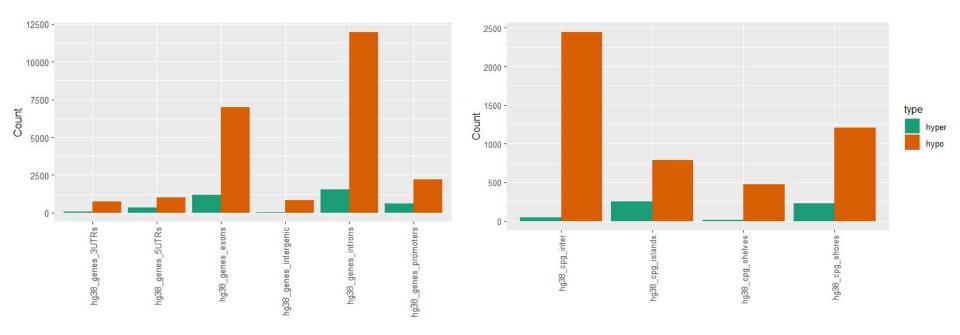


NKX6-2: predicted to be involved in cell differentiation; regulation of myelination; and regulation of transcription TBX15: regulate a variety of developmental processes, known to be hypermethylated in liver cancer

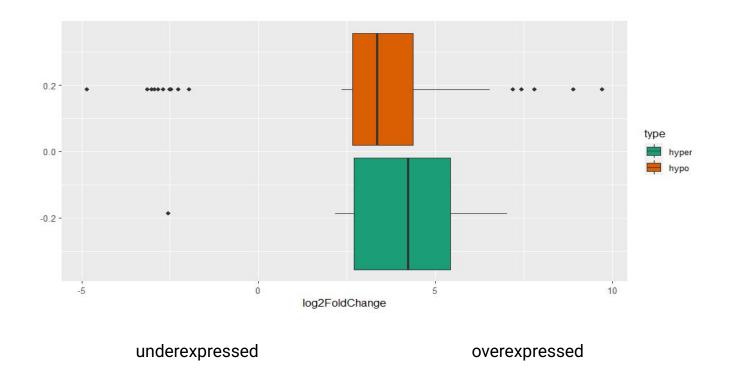
DMR annotation



DMR annotation



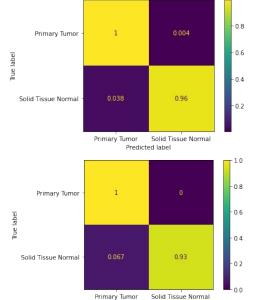
Promoter methylation and gene expression



Random forest

predicts tissue type from DEGs (200 top up- and downregulated) and DMLs (top 500) between healthy (n=41) and tumor (n=371)

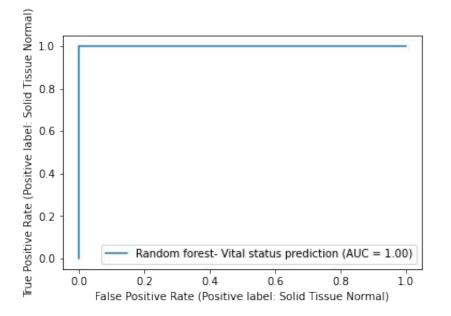
classification report	on the trai	n set:		
ĝ.	precision	recall	f1-score	support
Primary Tumor	1.00	1.00	1.00	250
Solid Tissue Normal	0.96	0.96	0.96	26
accuracy			0.99	276
macro avg	0.98	0.98	0.98	276
weighted avg	0.99	0.99	0.99	276
classification report	on the test	set:		
	precision	recall	f1-score	support
Primary Tumor	0.99	1.00	1.00	121
Solid Tissue Normal	1.00	0.93	0.97	15
accuracy			0.99	136
macro avg	1.00	0.97	0.98	136
weighted avg	0.99	0.99	0.99	136



Predicted label

Random forest

predicts tissue type from DEGs (200 top up- and downregulated) and DMLs (top 500) between healthy (n=41) and tumor (n=371)

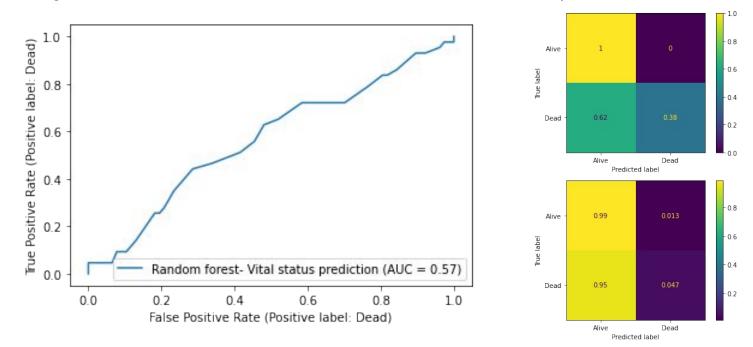


most important features:

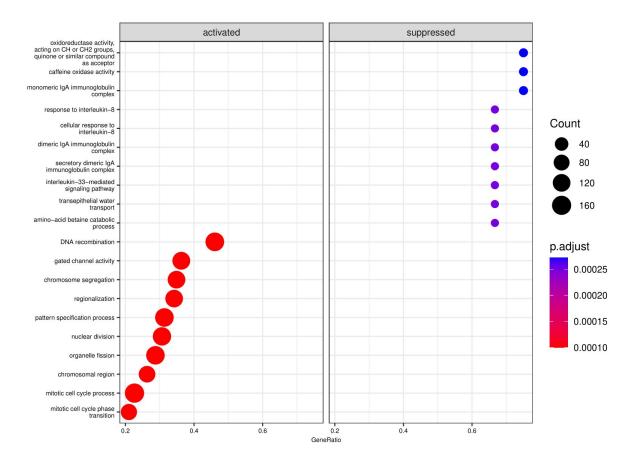
CLEC4M (known marker for hepatocellular carcinoma) CRHBP, FCN2 ...

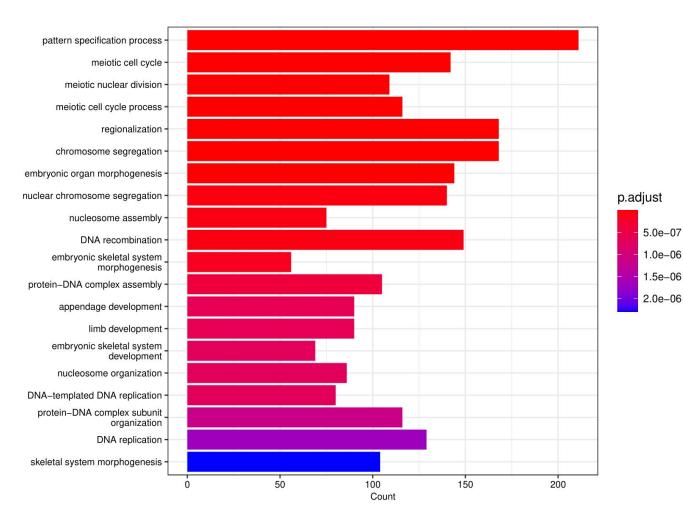
Random forest

predicting vital status from DEGs, DMLs and CNVs between alive and dead patients



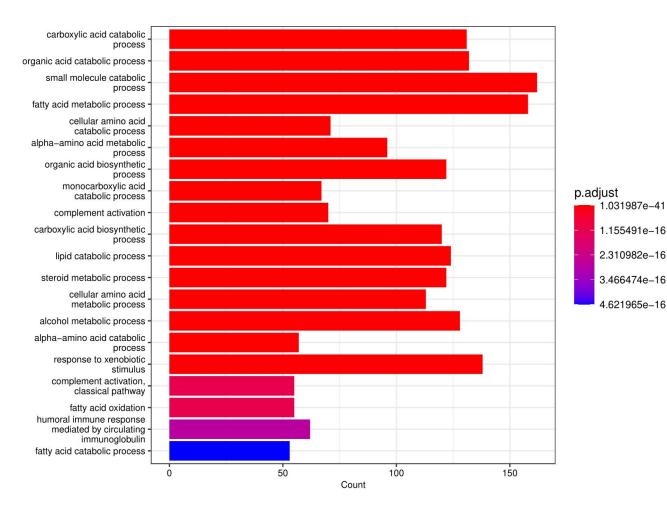
DEG Annotation





Upregulated:

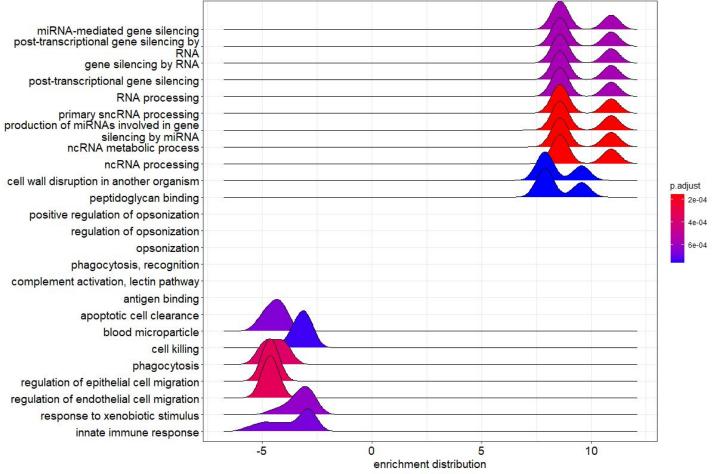
- Shows an increase in pathways that you would associate with cancer.
- Possibly shows dedifferentiation of the cells.

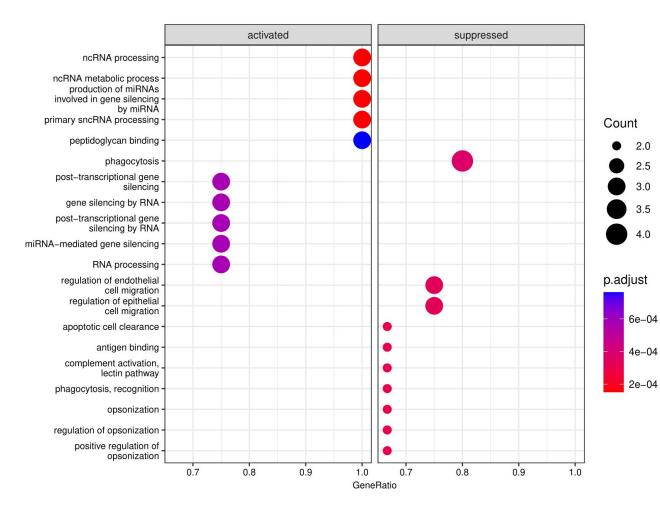


Downregulated

- Mostly associated with metabolic processes.
- Interestingly, catabolic processes are also downregulated

ML Features Annotation





ML Features

- Mostly associated gene regulation/ processing
- Also shows downregulation of immunogenic pathways

Future prospects

- Cancer evolution: One can carry out analysis of data from cancer patients suffering from various different stages of cancer (or ideally analysis of the same patient but over different time points).
- Cancer therapy: RNA metabolism and regulation seems to play an important role in determining the mortality of cancer patients. A deeper dive into these processes, especially the ones involving miRNAs, may help in discovering potential targets for therapeutic interventions.

Questions?