Joshi, P., Dhar, R. EpICC: A Bayesian neural network model with uncertainty correction for a more accurate classification of cancer. *Sci Rep* 12, 14628 (2022).

Computational Cancer Research

Seminar Talk by Abhinav Mishra

December 7th, 2022

"It really is a nice theory. The only defect I think it has is probably common to all philosophical theories. It's wrong."

Saul Kripke (1980, 'Naming and Necessity', pg. 64)

EpiStemic Invariance in Cancer Classification*

Motivation

Goal

Background

Methods

Remarks

Motivation

Measure of confidence can improve decision-making ability

Classification of individual patient samples into cancer types, and subtypes with uncertainty with each prediction.

Background

Quality of data

Labels Measurements

Uncertainty

Epistemic

Model

Parameter selection

What is Epistemic Uncertainty?

Variations in model fitting Variations in classification

What is Epistemic Invariance ?

The property of being always equally accessible.

Methods

3-layered BNN + uncertainty corrected First Layer - 250 units, Hidden layer - 95 units, Output layer - 31 units

Source: Figure 1, pg. 3, https://doi.org/10.1038/s41598-022-18874-6

Data **Trancriptome (TCGA level 3)**

- Sequencing
- Illumina HiSeq 200
- $\log_2(x + 1)$ transformed RSEM normalized
 - Samples
 - 10,013
 - Splitting
- $80\% \rightarrow \text{training} + \text{feature selection} | 20\% \rightarrow \text{testing} |$

Counts

Data Trancriptome (TCGA level 3)

Cancer types

Cancer subtypes 4 out of 31

> Source UCSC XENA

31

Data **Binary classification: Cancer vs. Non-cancer**

- Values
- Gene expression values of normal samples (GTEx) Counts
 - $log_{2}(x + 1)$ transformed RSEM normalized
 - Samples
 - 7851
 - Splitting
- $80\% \rightarrow \text{training} + \text{feature selection} | 20\% \rightarrow \text{testing}$

Data **Binary classification: Cancer vs. Non-cancer**

- Missing values
 - 7 Model
- L2-regularised logistic regression

Data **Cancer subtype**

Expression values assigned to respective types

Phenotypic information

Feature Selection Two-step PCA

1. Selecting a set of genes (n=103) from the original RNA-seq data. 2. Selecting an ever smaller set from the step above

Why? Reducing the risk of over-fitting, and redundancy.

Feature Selection Two-step PCA

number of optimal genes ~ gene = **max** [Factor loading]

Minimum number of genes required to achieve high accuracy

First step Principal Component Analysis

For each component up to 10,

<u>Second step</u> Logistic Regression

Data points D: for i^{th} predictor variable and target variable y_i

 $D = (x_i, y_i) \forall i \in 1, 2, 3, ..., N,$

Objective

N = number of sample points

Learn the parameters w such that the probability of occurrence of data given the model parameters is maximised.

Maximum likehood estimate

 $\tilde{w} = \arg\max p(D \mid w)$

W

True Posteriori ┥ $p(w \mid L$

- Solution of $p(w \mid D)$ is controllable & feasible by
 - minimising <u>KL divergence</u>

- between

- 1. Minimise the difference between the distributions $q(w \mid \delta) \& p(w \mid D)$. 2. Maximise the probability of occurrence p(D|w).

 - The probability distribution that the model extracts. What is *p* ?
 - The probability distribution that already exists.

What is q?

Example **KL Divergence**

Subtract from log(N) to get Shannon Entropy

X	0	1	2
P(X)	9/25	12/25	4/25
Q(X)	1/3	1/3	1/3

Source: Table 2.1, Kullback, Solomon (1959), Information Theory and Statistics

(Information loss?) => Loss function ??

q is the variational posterior

Evaluation Metrics BNN: prediction of individual cancer types before correction

Source: Fig 2(a), pg. 4, https://doi.org/10.1038/s41598-022-18874-6

Precision & Recall > 0.75 Top 20 genes (Highest F1 scores)

Source: Fig S4, Supplementary Material, https://doi.org/10.1038/s41598-022-18874-6

No. of genes

Uncertainty **Estimation**

Index of the class

Why? Getting an idea about the confidence of predictions of a model.

Softmax prediction for t_{th} monte-carlo iteration

Uncertainty Correction

1. Fit a linear model between the log-oc

$$f(x) = ln(\frac{\pi}{1-x})$$
$$x + \beta \sqrt{\xi_i} + \epsilon, \ error \sim N(0,\sigma^2)$$

$$f(E[\widehat{p_i}]) = \alpha + \beta_{\mathcal{N}}$$

- 2. Calculate the coefficients α , β of the linear model using OLS.
- 3. Calculate the corrected prediction probabilities for each cancer class.

$$\widehat{p_{corr,i}} = f^{-1}(E[\widehat{p_i}] - \beta \xi_i)$$

dds of
$$E[\hat{p}_i]$$
 and $\sqrt{\xi_i}$.

3-layered BNN + uncertainty corrected First Layer - 250 units, Hidden layer - 95 units, Output layer - 31 units

Source: Figure 1, pg. 3, https://doi.org/10.1038/s41598-022-18874-6

Evaluation Metrics EpiCC: Comparison of F1 scores after uncertainty correction

THCA subtypes

Source: Fig 4, pg, 7, https://doi.org/10.1038/s41598-022-18874-6

Subtype Classification Accuracy & F1 Score

TP + FNTP + FN + FP + TNAccuracy = $Precision(P) = \frac{TP}{TP + FP}$ $\frac{TP}{TP + FN}$ Recall(R) =2PRF1 Score = ------P + R

Filtering Cutoff Accuracy & Number of samples

Source: Fig 3(c), pg. 5, https://doi.org/10.1038/s41598-022-18874-6

Distribution of Epistemic Uncertainty

Source: Fig. S5, Supplementary Materials, https://doi.org/10.1038/s41598-022-18874-6

Comparison of Mean Uncertainty correct and incorrect predictions

Independent validation: Accuracy

UCSC XENA

Source: Fig 3(d), pg. 5, https://doi.org/10.1038/ s41598-022-18874-6

BRCA (external cohort)

Performance Comparison Accuracy

	Classification accuracy (%)					
Study	Cancer types	LGG subtypes	BRCA subtypes	ESCA subtypes	THCA subtypes	
Lyu and Haque ²⁹	95.59% (33)	NA	NA	NA	NA	
Kim et al. ³¹	91.74% (21)	NA	NA	NA	NA	
Xiao et al. ²⁵	96%-99% (3)	NA	NA	NA	NA	
Ramirez et al. ⁴⁹	94.70% (33)	NA	NA	NA	NA	
Sun et al. ⁴⁸	97.47% (12)	NA	NA	NA	NA	
Pei et al. ⁵⁰	NA	63.90 (3)	NA	NA	NA	
Couture et al. ⁵¹	NA	NA	94 (2)	NA	NA	
EpICC	97.83% (31)	81.31 (3)	94.98 (2)	97.5 (3)	95.24 (2)	

Source: Table 1, pg. 8, https://doi.org/10.1038/s41598-022-18874-6

Remarks

Combining transcriptomic data with epigenetic modification patterns in cancers can increase subtype classification accuracy.

This work* demonstrates the value of modelling uncertainty in cancer classification.

"Die Grenzen meiner Sprache sind die Grenzen meiner Welt"

Ludwig Wittgenstein (1922, 'Tractatus logigo-philosphicus')

References & Credits

*Joshi, P., Dhar, R. EpICC: A Bayesian neural network model with uncertainty correction for a more accurate classification of cancer. *Sci Rep* **12**, 14628 (2022). https://doi.org/10.1038/s41598-022-18874-6. Repo: https://github.com/pjoshi-hub/Bayesian_classification_model

Theodoridis, K. (2007). Kripke and the Predicament of Epistemic Invariance. *Philosophical Inquiry*, *2*9(1/2), 72-83.

Presentation software 'Keynote' was used to develop slides. Background images on the first, and last slide belongs to the presenter.

