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Saul Kripke (1980, ‘Naming and Necessity’, pg. 64) 

“It really is a nice theory. The only defect I think 
it has is probably common to all philosophical 
theories. It's wrong.” 
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EpiCC
Epistemic Invariance in Cancer Classification*
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Motivation
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Measure of confidence can 
improve decision-making ability
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Goal
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Classification of individual patient 
samples into cancer types, and subtypes 

with uncertainty with each prediction. 
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Background
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Uncertainty

Aleatoric Epistemic 

Quality of data  

 


Labels 
Measurements 

Model

 

Parameter  

selection 
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What is Epistemic Uncertainty ?
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Variations in model fitting  
   

Variations in classification 
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What is Epistemic Invariance ?
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The property of being always 
equally accessible. 
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Epistemology

Kripke’s semantics 

Isomorphism

Epistemic modal logic

Epistemic Invariance 

Uncertainty Invariance
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Priori Posterior

Weights

Probability distribution



Methods
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3-layered BNN + uncertainty corrected
First Layer - 250 units, Hidden layer - 95 units, Output layer - 31 units

17

Source: Figure 1, pg. 3, https://doi.org/10.1038/s41598-022-18874-6 



Data
Trancriptome (TCGA level 3)

Sequencing 


Illumina HiSeq 200 


Counts 


log2(x + 1) transformed RSEM normalized 


Samples 


10,013 


Splitting 


80% → training + feature selection | 20% → testing
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Data
Trancriptome (TCGA level 3)

Cancer types 

31  


Cancer subtypes 

4 out of 31 


 

Source 


UCSC XENA 

19



Data
Binary classification: Cancer vs. Non-cancer

Values 


Gene expression values of normal samples (GTEx) 


Counts 


log2(x + 1) transformed RSEM normalized 


Samples 


7851 


Splitting 


80% → training + feature selection | 20% → testing 
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Data
Binary classification: Cancer vs. Non-cancer

Missing values 

7 


Model 

L2-regularised logistic regression 
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Data
Cancer subtype

Expression values assigned to respective types 


 


 


 


Phenotypic information
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9 subtypes      (n=50)



Feature Selection
Two-step PCA

 


Why ? Reducing the risk of over-fitting, and redundancy. 


 


  


1. Selecting a set of genes (n=103) from the original RNA-seq data. 


2. Selecting an ever smaller set from the step above
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Feature Selection
Two-step PCA

 

First step Principal Component Analysis  


For each component up to 10, 


number of optimal genes ∼ gene = max |Factor loading|  


 


Second step Logistic Regression 


Minimum number of genes required to achieve high accuracy
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Bayesian Neural Network
BNN

Objective  

  


  

 


Data points D: for ith predictor variable and target variable yi  


D = (xi,yi)∀i ∈ 1,2,3,...,N, 

N = number of sample points 
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Bayesian Neural Network
BNN

Learn the parameters  such that the probability of occurrence of data given the model 
parameters is maximised. 


   

  


Maximum likehood estimate      





 

 

w

∼w = arg max p(D |w)

w

26



Bayesian Neural Network
BNN

 


 


 


∼w = arg max p(D |w)

w

p(w |D) =
p(D |w)p(w)

∫ p(D |w)p(w)dx

Baye’s theorem
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Occurence

True Posteriori Assumed Priori



Bayesian Neural Network
BNN

Solution of  is controllable & feasible by  


minimising KL divergence  


between  


variational posterior and true posterior. 


 


p(w |D)

q(w |δ) = ∏
j

N(wj |μj, σ2)
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’s parameters q
’s mean and variancewj



Bayesian Neural Network
BNN

1. Minimise the difference between the distributions q(w | δ) & p(w | D) . 


2. Maximise the probability of occurrence p(D|w).   


 


What is q ? 
The probability distribution that the model extracts.   


 What is p ? 
The probability distribution that already exists.
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Example
KL Divergence

 


 


    


(Information loss?) => Loss function ?? 


Subtract from  to get Shannon Entropy

DKL(P | |Q) = ∑
x∈X

P(x) ln(
P(x)
Q(x)

)

=
9
25

ln(
9/25
1/3

) +
12
25

ln(
12/25

1/3
) +

4
25

ln(
4/25
1/3

)

∼ 0.0852996

log(N)
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X 0 1 2

P(X) 9/25 12/25 4/25

Q(X) 1/3 1/3 1/3

Source: Table 2.1, Kullback, Solomon (1959), 
Information Theory and Statistics

x



Bayesian Neural Network
BNN

 


 


 
∼
δ = arg min KLδ[q(w |δ) | | p(w |D)]
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’s estimate from δ q
Kullback-Leibler divergence

Reference distribution
 is the true posterior 


 is the variational posterior 

p

q



Evaluation Metrics
BNN: prediction of individual cancer types before correction
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Source: Fig 2(b), pg. 4, https://doi.org/10.1038/s41598-022-18874-6 



Overall Accuracy comparison
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Source: Fig 2(a), pg. 4, https://doi.org/10.1038/s41598-022-18874-6 



Precision & Recall > 0.75 
Top 20 genes (Highest F1 scores)
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Source: Fig S4, Supplementary Material, https://doi.org/10.1038/s41598-022-18874-6 



Uncertainty
Estimation

 Why ? Getting an idea about the confidence of predictions of a model.  


 


 


 
Epistemic Uncertainity, ξi =
1
T

t=T

∑
t=1

( ̂p i
t − pi)2
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Mean value for 500 iterations

Index of the class Softmax prediction for  monte-carlo iteration tth



Uncertainty
Correction

1. Fit a linear model between the log-odds of  and . 








2. Calculate the coefficients ,  of the linear model using OLS. 


3. Calculate the corrected prediction probabilities for each cancer class. 


E[ ̂p i] ξi

f(x) = ln(
x

1 − x
)

f(E[ ̂pi ]) = α + β ξi + ϵ, error ∼ N(0,σ2)

α β

̂pcorr,i = f −1(E[ ̂pi ] − β ξi)
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3-layered BNN + uncertainty corrected
First Layer - 250 units, Hidden layer - 95 units, Output layer - 31 units
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Source: Figure 1, pg. 3, https://doi.org/10.1038/s41598-022-18874-6 



Evaluation Metrics
EpiCC: Comparison of F1 scores after uncertainty correction
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Source: Fig 3(b), pg. 5, https://doi.org/10.1038/s41598-022-18874-6 



Subtype Classification
Accuracy & F1 Score

 


  


 


Accuracy =
TP + FN

TP + FN + FP + TN

Precision(P) =
TP

TP + FP

Recall(R) =
TP

TP + FN

F1 Score =
2PR

P + R
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Source: Fig 4, pg. 7, https://doi.org/10.1038/s41598-022-18874-6 



Filtering Cutoff
Accuracy & Number of samples
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Source: Fig 3(c), pg. 5, https://doi.org/10.1038/s41598-022-18874-6 



Distribution of Epistemic Uncertainty
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Source: Fig. S5, Supplementary Materials, https://doi.org/10.1038/s41598-022-18874-6 



Comparison of Mean Uncertainty
correct and incorrect predictions
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Independent validation: Accuracy

43 Source: Fig 3(e), pg. 5, https://doi.org/10.1038/ 
s41598-022-18874-6 

UCSC XENA

Source: Fig 3(d), pg. 5, https://doi.org/10.1038/ 
s41598-022-18874-6 



Performance Comparison 
Accuracy
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Source: Table 1, pg. 8, https://doi.org/10.1038/s41598-022-18874-6 



Remarks
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Combining transcriptomic data with 
epigenetic modification patterns in cancers 

can increase subtype classification accuracy. 
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This work* demonstrates the value of 
modelling uncertainty in cancer 

classification. 
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Ludwig Wittgenstein (1922, ’Tractatus logigo-philosphicus’) 

„Die Grenzen meiner Sprache sind die 
Grenzen meiner Welt” 
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